井—地瞬變電磁法浮動(dòng)系數(shù)空間交匯與等效電流環(huán)反演方法研究
本文選題:井-地瞬變電磁法 + 等效電流環(huán); 參考:《中國(guó)地質(zhì)大學(xué)》2017年博士論文
【摘要】:我國(guó)煤礦水文地質(zhì)條件十分復(fù)雜,水害防治形勢(shì)愈發(fā)嚴(yán)峻,水源性隱蔽致災(zāi)體的準(zhǔn)確探測(cè)仍將是今后防治水工作的重點(diǎn)和難點(diǎn)。煤礦井下水害事故主要發(fā)生在巷道掘進(jìn)期間和工作面回采期間。雖然物探方法在以往實(shí)踐中提前發(fā)現(xiàn)災(zāi)害性地質(zhì)異常體,為保障礦井安全生產(chǎn)發(fā)揮巨大作用,但也存在對(duì)巷道前方探測(cè)距離不夠長(zhǎng)(一般在100m左右)、假異常多,對(duì)工作面穿透距離短(一般不超過(guò)200m)、遠(yuǎn)處分辨率不夠等缺點(diǎn)。另外,在回采工作面頂?shù)装搴畬舆M(jìn)行注漿改造時(shí),對(duì)小體積的導(dǎo)水性陷落柱、巖溶、斷層等水源性隱蔽致災(zāi)體的精確探測(cè)存在技術(shù)缺口。針對(duì)當(dāng)前技術(shù)手段的不足,研究一種在煤礦井下水平鉆孔中接收感應(yīng)二次場(chǎng)、地面回線磁源激發(fā)一次場(chǎng)的瞬變電磁探測(cè)技術(shù)(簡(jiǎn)稱(chēng)井-地瞬變電磁法)。地面發(fā)射源可將回線源和電流盡量加大,增加發(fā)射磁矩以盡量激發(fā)地下水源性隱蔽致災(zāi)體;水平鉆孔內(nèi)布置的測(cè)點(diǎn)距離異常體更近,最大限度減少二次場(chǎng)的距離損失。理論上,井-地瞬變電磁法對(duì)水源性隱蔽致災(zāi)體具有更強(qiáng)的分辨能力。在煤礦巷道掘進(jìn)前方超前鉆孔中應(yīng)用該項(xiàng)技術(shù),能實(shí)現(xiàn)利用單個(gè)鉆孔長(zhǎng)距離準(zhǔn)確探查掘進(jìn)前方水源性隱蔽致災(zāi)體的目的;在工作面鉆孔中應(yīng)用該項(xiàng)技術(shù),能對(duì)鉆孔周?chē)┑舻乃葱噪[蔽致災(zāi)體進(jìn)行定位,提高探查準(zhǔn)確度和效率。論文以載流回線磁源激發(fā)場(chǎng)分布和異常體感應(yīng)渦流場(chǎng)三分量特征為研究對(duì)象,以公式推導(dǎo)、三維時(shí)域有限差分?jǐn)?shù)值模擬、理論分析等為研究方法,對(duì)異常體的井-地瞬變電磁法響應(yīng)特征、感應(yīng)渦流場(chǎng)三分量的空間指向性、浮動(dòng)系數(shù)空間交匯算法和最小二乘反演算法進(jìn)行研究,實(shí)現(xiàn)基于井-地瞬變電磁法的異常體三維空間定位技術(shù)。論文取得的主要研究成果如下:(1)推導(dǎo)了激發(fā)場(chǎng)的解析解公式,獲得了激發(fā)場(chǎng)的分布特征和回線源最佳尺寸匹配依據(jù)。從畢奧-薩伐爾定律出發(fā),對(duì)圓形回線源、長(zhǎng)方形回線源和正方形回線源分別進(jìn)行磁感應(yīng)強(qiáng)度解析解的推導(dǎo)。對(duì)各種激發(fā)源載入直流電后在空間形成的磁場(chǎng)分布進(jìn)行數(shù)值計(jì)算,分析總結(jié)其分布特征。依據(jù)回線源在地下不同深度產(chǎn)生磁場(chǎng)的強(qiáng)度分布特征,獲得最佳回線源尺寸的選擇辦法。三種激發(fā)源的激發(fā)場(chǎng)在空間的分布特征基本一致,激發(fā)場(chǎng)強(qiáng)度總體呈淺部強(qiáng)、深部弱的分布特征,磁感應(yīng)強(qiáng)度主要受與回線源的距離控制,在回線附近的磁場(chǎng)表現(xiàn)為最強(qiáng)值。隨著與回線源之間距離的增加,磁感應(yīng)強(qiáng)度變化逐漸減慢。在與回線源一定距離的平面上,磁感應(yīng)強(qiáng)度分布呈中間強(qiáng)、邊緣弱的特征,等值線依據(jù)回線源形狀表現(xiàn)為圓形或橢圓形。在回線源中間部分區(qū)域,激發(fā)場(chǎng)主要為垂向磁場(chǎng)且強(qiáng)度在橫向上的變化較小,這是地面瞬變電磁法將回線中心一定區(qū)域當(dāng)作均勻場(chǎng)的原因。以實(shí)際生產(chǎn)中常用的正方形回線為例,計(jì)算8種常見(jiàn)尺寸回線在地下不同深度產(chǎn)生的磁場(chǎng)。大尺寸回線源在淺部產(chǎn)生的激發(fā)場(chǎng)并非更強(qiáng),但隨深度變化相對(duì)穩(wěn)定,且深部的激發(fā)場(chǎng)相對(duì)更強(qiáng)。在某個(gè)固定深度的目標(biāo)體處,過(guò)大或過(guò)小尺寸的回線源并不能激發(fā)出最大強(qiáng)度的一次磁場(chǎng)。計(jì)算結(jié)果對(duì)井-地瞬變電磁法回線源尺寸的選擇具有指導(dǎo)意義。(2)獲得了煤礦典型水源性隱蔽致災(zāi)體的響應(yīng)特征,和主要參數(shù)改變對(duì)三分量響應(yīng)的影響規(guī)律。采用三維時(shí)域有限差分算法,對(duì)構(gòu)建的含水陷落柱、小煤窯積水采空區(qū)、含導(dǎo)水?dāng)鄬雍晚敯迳皫r富水體等煤礦典型水源性隱蔽致災(zāi)體的全空間三分量響應(yīng)進(jìn)行數(shù)值模擬。各模型的異常體均有明顯的三分量磁異常響應(yīng),異常測(cè)道曲線均以“N”或“V”為基本形狀,過(guò)零點(diǎn)和極值點(diǎn)分別指向異常體中心在測(cè)線上的位置。對(duì)回線源尺寸、低阻覆蓋層、異常體方位、異常體規(guī)模和距離這五方面因素的影響進(jìn)行數(shù)值模擬。回線源尺寸的增加能提高總場(chǎng)和異常場(chǎng)的響應(yīng)強(qiáng)度,但增加幅度逐漸減弱,且異常場(chǎng)面臨幅值極限。低阻覆蓋層使得異常響應(yīng)幅值隨覆蓋層電阻率的降低而減弱。三分量異常曲線形態(tài)組合與異常體相對(duì)測(cè)線的空間方位具有單一的匹配性,可據(jù)此對(duì)異常體方位進(jìn)行判斷。異常體與測(cè)線距離的變化,只改變異常曲線的幅值,不改變曲線的形態(tài)。距離測(cè)線越遠(yuǎn),異常信號(hào)越弱。以?xún)x器精度和大地電磁噪聲為基本閾值,確定可分辨最小信號(hào)強(qiáng)度。從測(cè)線深度改變時(shí)總場(chǎng)三個(gè)分量的強(qiáng)度與最小信號(hào)閾值之間的相對(duì)關(guān)系,探討了井-地瞬變電磁法的極限探測(cè)深度。(3)以水平電流環(huán)輻射磁場(chǎng)各分量矢量的空間指向性為基礎(chǔ),開(kāi)發(fā)出適用于水平測(cè)線不同Y偏移距的浮動(dòng)系數(shù)空間交匯算法。通過(guò)分析水平電流環(huán)輻射磁場(chǎng)的三個(gè)分量在XY平面、XZ平面上,水平測(cè)線處各測(cè)點(diǎn)的三分量矢量分布,確定各分量矢量與電流環(huán)中心在XY平面、XZ平面上具有明確的指向性。采用時(shí)域有限差分算法模擬異常體的異常場(chǎng),分析感應(yīng)渦流磁場(chǎng)隨時(shí)間的分布規(guī)律,通過(guò)與水平電流環(huán)產(chǎn)生磁場(chǎng)的進(jìn)行對(duì)比,認(rèn)為異常體在外部產(chǎn)生的異常場(chǎng),可以用位于異常體內(nèi)部的電流環(huán)所輻射的磁場(chǎng)來(lái)代替。研究水平測(cè)線上磁場(chǎng)三分量矢量對(duì)水平電流環(huán)中心的交匯特性,開(kāi)發(fā)出適用于水平測(cè)線的浮動(dòng)系數(shù)空間交匯算法,并建立基于不同Y偏移距的浮動(dòng)系數(shù)表。在進(jìn)行XZ平面交匯時(shí),根據(jù)系數(shù)表對(duì)Z分量進(jìn)行自適應(yīng)調(diào)節(jié),可使XZ平面的交匯結(jié)果更準(zhǔn)確。分別位于水平測(cè)線不同象限四個(gè)模型的試算結(jié)果,驗(yàn)證了浮動(dòng)系數(shù)空間交匯算法的準(zhǔn)確性。采用此算法對(duì)不同傾斜角度的近似水平電流環(huán)進(jìn)行空間定位試算,計(jì)算結(jié)果說(shuō)明浮動(dòng)系數(shù)空間交匯算法更適用于水平電流環(huán),傾斜角度的增加會(huì)導(dǎo)致交匯準(zhǔn)確度的降低。(4)以分離的異常場(chǎng)三分量數(shù)據(jù)為基礎(chǔ),采用基于電流環(huán)理論的最小二乘算法,反演異常體的尺寸、空間姿態(tài)和中心坐標(biāo)。以水平測(cè)線正常區(qū)段采集的數(shù)據(jù)為背景場(chǎng),采用多項(xiàng)式擬合算法對(duì)測(cè)線異常段的背景場(chǎng)進(jìn)行曲線擬合,獲得全測(cè)線的背景場(chǎng)。通過(guò)總場(chǎng)數(shù)據(jù)減去背景場(chǎng)的方式得到異常場(chǎng)。借助三維直角坐標(biāo)系的旋轉(zhuǎn)公式實(shí)現(xiàn)任意傾斜角度的電流環(huán)正演。視異常體內(nèi)部的渦流場(chǎng)為一個(gè)等效電流環(huán),賦予其中心點(diǎn)坐標(biāo)、半徑、傾斜角度等變量,使用帶約束的最小二乘反演算法對(duì)各變量進(jìn)行反演計(jì)算,以最小擬合誤差為導(dǎo)向?qū)﹄娏鳝h(huán)的參數(shù)不斷迭代計(jì)算,獲得異常體中心坐標(biāo)、空間姿態(tài)、規(guī)模大小等參數(shù)。分別以MAXWELL軟件對(duì)板狀體的正演、時(shí)域有限差分算法對(duì)立方體的數(shù)值模擬、以地面鋁板為異常體的現(xiàn)場(chǎng)試驗(yàn),共三種方式取得的數(shù)據(jù)為基礎(chǔ),對(duì)反演算法進(jìn)行驗(yàn)證。結(jié)果顯示,對(duì)板狀體數(shù)據(jù)反演得到的電流環(huán)中心坐標(biāo)、空間姿態(tài)、尺寸均與模型參數(shù)吻合;對(duì)立方體數(shù)據(jù)反演得到的電流環(huán)中心坐標(biāo)和空間姿態(tài)與模型參數(shù)吻合較好,但尺寸結(jié)果不穩(wěn)定,與模型參數(shù)存在一定偏差;對(duì)現(xiàn)場(chǎng)試驗(yàn)數(shù)據(jù)反演得到的電流環(huán)中心坐標(biāo)和空間姿態(tài)與模型參數(shù)吻合較好,但同樣存在尺寸結(jié)果不穩(wěn)定,存在一定偏差的現(xiàn)象。
[Abstract]:The hydrogeological conditions of coal mines in China are very complicated and the prevention and control of water hazards are becoming more and more severe. The accurate detection of the hidden source of water source will still be the key and difficult point in the future work of water prevention and control. The abnormal geological body plays a great role in ensuring the safety of mine production, but there are also shortcomings in the distance not long (usually around 100m), false abnormality, short penetration distance (generally not more than 200m), and not enough resolution in the distance in the front of the roadway. In addition, when the aquifer in the roof and floor of the mining face is modified, it is small There is a technical gap in the precise detection of water borne concealment bodies, such as the volume of water diversion column, karst, fault and so on. In view of the shortage of current technical means, a transient electromagnetic detection technique (called well ground transient electromagnetic method) for receiving the first field in the horizontal borehole in the underground coal mine is studied. The source and current can be used to increase the source and current of the return line as far as possible, to increase the emission magnetic moment to try to stimulate the underground water source hidden disaster relief body as far as possible; the measurement points arranged in the horizontal borehole are closer to the abnormal body, and the distance loss of the two field is reduced to the maximum. This technique can be applied in the front of the advance borehole in the front of the mine roadway, and it can realize the purpose of using the long distance of a single drill to detect the waterborne concealment body in front of the heading, and the application of this technique in the drilling of the working face can make the location of the waterborne concealment body leaked around the borehole, and improve the accuracy and efficiency of the exploration. The three component characteristics of the excitation field distribution of the loop magnetic source and the abnormal body induction eddy current field are studied. By formula derivation, the three-dimensional finite difference numerical simulation and the theoretical analysis are used as the research methods. The response characteristics of the well to ground transient electromagnetic method, the spatial directivity of the three components of the induced eddy current field, the spatial intersection algorithm of the floating coefficient and the most The small two ply inversion algorithm is studied to realize the three-dimensional spatial positioning technique of abnormal body based on well ground transient electromagnetic method. The main achievements of this paper are as follows: (1) the analytical formula of the excitation field is derived, the distribution characteristics of the excitation field and the best size matching basis for the return line source are obtained. The linear source, the rectangular return source and the square loop source are derived for the analytical solution of the magnetic induction intensity respectively. The distribution characteristics of the magnetic field in the space formed after the various excitation sources are loaded in the space are calculated, and the distribution characteristics of the magnetic field are analyzed and summed up. The intensity distribution characteristics of the magnetic field are generated by the source of the return line at different depths in the underground, and the optimum return line ruler is obtained. The distribution characteristics of the excitation field of the three excitation sources are basically the same, the intensity of the excitation field is shallow and the deep is weak, the magnetic induction intensity is mainly controlled by the distance from the return line, and the magnetic field near the return line is the strongest. With the increase of the distance between the return line and the return line, the magnetic induction intensity changes In a plane with a certain distance from the return line source, the distribution of magnetic induction intensity is strong in the middle and weak in the edge, and the contour lines are round or elliptical according to the shape of the return line. In the middle part of the loop source, the excitation field is mainly the vertical magnetic field and the intensity is slightly changed in the transverse direction. This is the ground transient electromagnetic method which is the return line. The cause of a certain area of the center is considered as a uniform field. Taking the square return line commonly used in actual production as an example, the magnetic field produced at different depths of the 8 common dimensions is calculated. The excitation field produced in the shallow part is not stronger, but it is relatively stable with the depth change, and the deep excitation field is relatively stronger. The maximum intensity of the primary magnetic field can not be excited by the large or too small return line source at the target body of the degree. The calculation results are of guiding significance to the selection of the source size of the well ground transient electromagnetic method. (2) the response characteristics of the typical waterborne hidden disaster body in the coal mine are obtained, and the influence of the main parameters on the response of the three component is changed. The three dimensional finite difference time domain method is used to simulate the full space three component response of the constructed water bearing collapse column, the small coal mine water gob area, the water diversion fault and the roof sandstone rich water body. All the abnormal bodies of each model have an obvious three component magnetic anomaly response, and the abnormal path curves are all "N" or "V" is the basic shape, the zero crossing point and the extreme point point to the location of the anomaly body center on the measuring line respectively. Numerical simulation is carried out on the influence of the five factors such as the line source size, the low resistance cover layer, the abnormal body azimuth, the abnormal body size and the distance. The increase of the return line source size can increase the response strength of the total field and the abnormal field, but increase the response strength of the total field and the abnormal field. The amplitude of the abnormal response decreases with the decrease of the resistivity of the overlay. The combination of the three component abnormal curve and the spatial orientation of the abnormal body has a single match, which can be used to judge the azimuth of the abnormal body and the variation of the distance between the abnormal body and the line measuring. It only changes the amplitude of the abnormal curve and does not change the shape of the curve. The farther the distance from the measuring line, the weaker the abnormal signal is. The relative relation between the intensity of the three components of the total field and the minimum signal threshold is determined by using the instrument precision and the magnetotelluric noise as the basic threshold. The relationship between the intensity of the total field and the minimum signal threshold is discussed. The limit detection depth of the variable electromagnetic method. (3) based on the spatial directivity of each component vector of the magnetic field of the horizontal current ring, a floating coefficient space intersection algorithm suitable for the different Y offset of the horizontal line is developed. By analyzing the three components of the radiation magnetic field of the horizontal current ring in the XY plane, the XZ plane, and the three measuring points at the horizontal line. The component vector distribution is determined by the definite directivity of each component vector and the center of the current loop in the XY plane and the XZ plane. The time domain finite difference method is used to simulate the anomalous field of the abnormal body and analyze the distribution of the eddy current magnetic field with the time. The anomalous field can be replaced by the magnetic field radiated by the current ring located in the abnormal body. To study the intersection characteristic of the three component vector to the center of the horizontal current loop, a floating coefficient space intersection algorithm suitable for the horizontal line is developed and the floating coefficient table based on the different Y offset is established. The intersection of the XZ plane is confluence. On the basis of the adaptive adjustment of the Z component according to the coefficient table, the intersection results of the XZ plane are more accurate. The accuracy of the floating coefficient space intersection algorithm is verified by the trial results of four models of the different quadrants of the horizontal line. The algorithm is used to calculate the spatial location of the near horizontal current ring with different inclined angles. The result shows that the spatial intersection algorithm of floating coefficient is more applicable to the horizontal current ring, and the increase of the inclination angle will lead to the reduction of intersection accuracy. (4) based on the three component data of the separated anomaly field, using the least square algorithm based on the current loop theory, the scale of the abnormal body, the spatial attitude and the central coordinate are retrieved, and the horizontal line is normal. The data collected in the section is the background field, and the background field of the anomaly segment is fitted by polynomial fitting algorithm. The background field of the full measuring line is obtained. The anomalous field is obtained by the total field data subtracting the background field. With the help of the rotation formula of the 3D rectangular coordinate system, the current loop of the arbitrary angle angle is realized. The interior of the apparent anomaly body is realized. The eddy current field is an equivalent current ring, which gives its center point coordinates, radius and angle of angle, and uses the least square inversion algorithm with constraint to calculate the variables. The parameters of the center coordinate, space attitude and size of the anomaly body are obtained by iterative calculation of the parameters of the current ring with the minimum fitting error as the guidance. The numerical simulation of the cube by MAXWELL software, the numerical simulation of the cube by the finite difference time domain algorithm, the field test of the ground aluminum plate as the abnormal body, the data obtained from three ways, and the verification of the inversion algorithm. The results show that the center coordinates of the current ring, the spatial attitude and the size are all obtained by the inversion of the plate data. The center coordinates and the spatial attitude of the current loop obtained by the inversion of the cube data are in good agreement with the model parameters, but the size results are not stable, and there is a certain deviation from the model parameters. The center coordinates and the spatial attitude of the current loop obtained from the field test data are in good agreement with the model parameters, but the size of the current loop is also in good agreement with the model parameters. The result is unstable and there is a certain deviation.
【學(xué)位授予單位】:中國(guó)地質(zhì)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TD745;P631.325
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張保祥,劉春華;瞬變電磁法衰減電壓曲線編輯程序簡(jiǎn)介[J];物探化探計(jì)算技術(shù);2001年01期
2 曾向林;瞬變電磁法在工程地球物理勘探中的應(yīng)用[J];西部探礦工程;2001年03期
3 雷達(dá);瞬變電磁法數(shù)據(jù)提取純異常方法技術(shù)[J];物探與化探;2004年04期
4 陳衛(wèi);楊生;王有霖;劉濤;;時(shí)間域瞬變電磁法在地質(zhì)勘查中的應(yīng)用[J];礦產(chǎn)與地質(zhì);2006年Z1期
5 薛國(guó)強(qiáng);李貅;底青云;;瞬變電磁法理論與應(yīng)用研究進(jìn)展[J];地球物理學(xué)進(jìn)展;2007年04期
6 王春耀;尹尚先;凌標(biāo)燦;楊武洋;李永軍;劉德民;;時(shí)間域瞬變電磁法井下全方位賦水性探查研究[J];華北科技學(xué)院學(xué)報(bào);2007年04期
7 劉江;;復(fù)雜地形瞬變電磁法應(yīng)用技術(shù)研究[J];陜西煤炭;2009年06期
8 陳載林;黃臨平;陳玉梁;;我國(guó)瞬變電磁法應(yīng)用綜述[J];鈾礦地質(zhì);2010年01期
9 楊金偉;郭金風(fēng);;瞬變電磁法在煤礦井下探測(cè)中的應(yīng)用[J];科技創(chuàng)新導(dǎo)報(bào);2010年11期
10 熊濤;;探究瞬變電磁法的應(yīng)用[J];知識(shí)經(jīng)濟(jì);2010年14期
相關(guān)會(huì)議論文 前10條
1 李淑進(jìn);仲鵬;張佃濤;付永波;滿孝國(guó);郭金偉;;瞬變電磁法在2308運(yùn)輸聯(lián)絡(luò)巷防治水中的應(yīng)用[A];第六屆全國(guó)煤炭工業(yè)生產(chǎn)一線青年技術(shù)創(chuàng)新文集[C];2011年
2 薛國(guó)強(qiáng);李貅;底青云;;瞬變電磁法理論與應(yīng)用研究進(jìn)展[A];紀(jì)念中國(guó)地球物理學(xué)會(huì)成立60周年專(zhuān)輯[C];2007年
3 王中偉;梁芳敏;魏繼祖;;瞬變電磁法在場(chǎng)地溶洞勘探中應(yīng)用[A];中國(guó)地球物理·2009[C];2009年
4 胡鵬飛;何宏民;張釗;;瞬變電磁法在鶻嶺隧道工程勘察中的應(yīng)用[A];中國(guó)地球物理·2009[C];2009年
5 張德元;陳光明;;瞬變電磁法在四川某礦水害探測(cè)中的效果[A];四川省煤田地質(zhì)局論文集[C];2010年
6 薛國(guó)強(qiáng);周楠楠;閆述;陳衛(wèi)營(yíng);;電性源瞬變電磁法全場(chǎng)區(qū)探測(cè)方法[A];中國(guó)地球物理學(xué)會(huì)第二十七屆年會(huì)論文集[C];2011年
7 楊文鋒;郭愛(ài)俠;;單向脈沖瞬變電磁法應(yīng)用研究[A];1996年中國(guó)地球物理學(xué)會(huì)第十二屆學(xué)術(shù)年會(huì)論文集[C];1996年
8 岳建華;甘會(huì)春;劉樹(shù)才;許新剛;;礦井瞬變電磁法及其應(yīng)用[A];中國(guó)地球物理.2003——中國(guó)地球物理學(xué)會(huì)第十九屆年會(huì)論文集[C];2003年
9 蘇兆鋒;趙小文;楊全娣;徐方;揭志剛;湯洪志;;瞬變電磁法在隧道勘察中的應(yīng)用[A];中國(guó)地球物理學(xué)會(huì)第二十屆年會(huì)論文集[C];2004年
10 解海軍;曾方祿;姬中奎;;基于小波分析的瞬變電磁法資料去噪技術(shù)[A];煤礦安全與地球物理學(xué)術(shù)研討會(huì)論文集[C];2006年
相關(guān)重要報(bào)紙文章 前6條
1 高國(guó)芹 楊貴民;瞬變電磁法應(yīng)用于水源地勘查取得進(jìn)展[N];中煤地質(zhì)報(bào);2004年
2 記者 劉如春 通訊員 劉文祥;瞬變電磁法:把礦體“看”得更清楚[N];地質(zhì)勘查導(dǎo)報(bào);2007年
3 高富麗;地調(diào)局?jǐn)y手礦聯(lián)培訓(xùn)瞬變電磁法探測(cè)技術(shù)[N];地質(zhì)勘查導(dǎo)報(bào);2007年
4 束洪福;我國(guó)煤礦地下水害預(yù)測(cè)研究取得突破進(jìn)展[N];科技日?qǐng)?bào);2003年
5 束洪福;煤礦地下水害預(yù)測(cè)研究工作獲得突破[N];中國(guó)礦業(yè)報(bào);2003年
6 張偉;深部資源探測(cè)期待飛躍[N];中國(guó)黃金報(bào);2008年
相關(guān)博士學(xué)位論文 前8條
1 王鵬;井—地瞬變電磁法浮動(dòng)系數(shù)空間交匯與等效電流環(huán)反演方法研究[D];中國(guó)地質(zhì)大學(xué);2017年
2 劉曉;瞬變電磁法三維正演及非線性共軛梯度反演研究[D];中國(guó)地質(zhì)大學(xué)(北京);2016年
3 張瑩瑩;地空瞬變電磁法逆合成孔徑成像方法研究[D];長(zhǎng)安大學(xué);2016年
4 石顯新;瞬變電磁法勘探中的低阻層屏蔽問(wèn)題研究[D];煤炭科學(xué)研究總院;2005年
5 解海軍;煤礦積水采空區(qū)瞬變電磁法探測(cè)技術(shù)研究[D];中國(guó)地質(zhì)大學(xué)(北京);2009年
6 杜慶豐;瞬變電磁法工作裝置、數(shù)據(jù)預(yù)處理及反演解釋系統(tǒng)[D];中國(guó)地質(zhì)大學(xué)(北京);2008年
7 李建慧;基于矢量有限單元法的大回線源瞬變電磁法三維數(shù)值模擬[D];中南大學(xué);2011年
8 吳小平;TEM中寬頻激勵(lì)源及單脈沖測(cè)深方法研究[D];中南大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 張振坤;瞬變電磁法在伊犁某砂巖型鈾礦中的應(yīng)用研究[D];東華理工大學(xué);2015年
2 謝石文;瞬變電磁法同一回線與“8”字形回線一維正反演對(duì)比研究[D];東華理工大學(xué);2015年
3 吳學(xué)銀;瞬變電磁法三維有限差分正演研究[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
4 王浩;套后儲(chǔ)層探測(cè)關(guān)鍵技術(shù)研究[D];西安石油大學(xué);2015年
5 劉昭軍;瞬變電磁法隧道超前地質(zhì)預(yù)報(bào)正演模擬及應(yīng)用實(shí)例[D];廣西大學(xué);2015年
6 楊淼;基于SABER的地質(zhì)發(fā)射機(jī)的仿真及設(shè)計(jì)[D];中國(guó)艦船研究院;2015年
7 凌飛;瞬變電磁法低阻層屏蔽問(wèn)題研究[D];成都理工大學(xué);2015年
8 王偉都;瞬變電磁法在煤礦采空區(qū)含水性探測(cè)中的應(yīng)用研究[D];成都理工大學(xué);2015年
9 方程;綜合物探技術(shù)在煤炭礦井水文地質(zhì)中的應(yīng)用研究[D];成都理工大學(xué);2015年
10 寧剛;瞬變電磁法在煤礦地質(zhì)災(zāi)害(水害)勘查中的應(yīng)用研究[D];東華理工大學(xué);2015年
,本文編號(hào):1912476
本文鏈接:http://www.sikaile.net/kejilunwen/anquangongcheng/1912476.html