下運(yùn)帶式輸送機(jī)磁流變制動(dòng)技術(shù)研究
本文選題:下運(yùn)帶式輸送機(jī) + 磁流變制動(dòng)器; 參考:《太原科技大學(xué)》2017年碩士論文
【摘要】:在下運(yùn)帶式輸送機(jī)的制動(dòng)系統(tǒng)中,采用傳統(tǒng)摩擦制動(dòng)或液壓制動(dòng)會(huì)存在“熱衰退”、制動(dòng)尖叫、制動(dòng)閘瓦磨損嚴(yán)重、制動(dòng)力矩不能連續(xù)調(diào)控等問題。而磁流變制動(dòng)器作為一種新型的線控制動(dòng)器,可以極好的彌補(bǔ)這些缺點(diǎn),其具有能耗低、制動(dòng)時(shí)間短、部件磨損小、制動(dòng)力矩可調(diào)可控、便于集成新型控制技術(shù)等優(yōu)點(diǎn),這些優(yōu)點(diǎn)十分契合下運(yùn)帶式輸送機(jī)的制動(dòng)需求。針對(duì)這一問題,本文對(duì)傳統(tǒng)單線圈混合式磁流變制動(dòng)器進(jìn)行改進(jìn),設(shè)計(jì)了一種雙線圈旁置式新型磁流變制動(dòng)器,并將其應(yīng)用到小型下運(yùn)帶式輸送機(jī)的制動(dòng)系統(tǒng)中,以達(dá)到在增大磁流變制動(dòng)器制動(dòng)力矩的同時(shí)實(shí)現(xiàn)輕量化設(shè)計(jì)的目的。首先從微觀角度對(duì)磁流變制動(dòng)器的制動(dòng)機(jī)理進(jìn)行了數(shù)值模擬,搭建了磁流變液中磁性顆粒的動(dòng)力學(xué)仿真模型,研究了磁流變液體積分?jǐn)?shù)和磁場強(qiáng)度對(duì)其成鏈微觀結(jié)構(gòu)的影響,對(duì)磁性顆粒在磁場作用下的剪切過程進(jìn)行了數(shù)值模擬。其次以某小型下運(yùn)帶式輸送機(jī)為例,計(jì)算了該下運(yùn)帶式輸送機(jī)所需制動(dòng)力矩,根據(jù)所需制動(dòng)力矩,設(shè)計(jì)了一種雙線圈旁置式磁流變制動(dòng)器;贖erscher-Bulkley模型,推導(dǎo)了雙線圈旁置式磁流變制動(dòng)器的力矩模型,并提出了相應(yīng)的磁路設(shè)計(jì)方法。同時(shí)為了提高雙線圈旁置式磁流變制動(dòng)器制動(dòng)力矩,實(shí)現(xiàn)輕量化設(shè)計(jì)的目的,提出了一種基于有限元分析和多目標(biāo)遺傳算法的聯(lián)合優(yōu)化設(shè)計(jì)方法。利用該方法得到了磁路結(jié)構(gòu)的Pareto非劣解集,并選用組合賦權(quán)法對(duì)Pareto非劣解進(jìn)行選優(yōu),得到了制動(dòng)器最佳的磁路結(jié)構(gòu)參數(shù)。最后通過對(duì)磁流變液的Bingham模型進(jìn)行修正,得到磁流變液的等效表觀粘度,并將其作為聯(lián)系磁場、流場、溫度場的重要中間變量。另外,建立了雙線圈旁置式磁流變制動(dòng)器的運(yùn)動(dòng)學(xué)方程,基于麥克斯韋方程、Navier-Stokes連續(xù)性方程、共軛傳熱方程,采用序貫耦合法建立了磁流變制動(dòng)器的磁流固熱多物理場耦合仿真模型,得到了雙線圈旁置式新型磁流變制動(dòng)器在下運(yùn)帶式輸送機(jī)非制動(dòng)工況下的穩(wěn)態(tài)溫度分布,以及制動(dòng)工況下的磁場分布、流場分布、瞬態(tài)溫度場分布。結(jié)果表明所提出的雙線旁置式新型磁流變制動(dòng)器可以滿足小型下運(yùn)帶式輸送機(jī)的制動(dòng)要求。本論文的研究可以為磁流變制動(dòng)器的結(jié)構(gòu)設(shè)計(jì)、磁路設(shè)計(jì)以及優(yōu)化分析提供參考,同時(shí)也能為下運(yùn)帶式輸送機(jī)的制動(dòng)方式提供了一種新的選擇方案。
[Abstract]:In the braking system of belt conveyor, the traditional friction brake or hydraulic brake will have some problems, such as "heat decline", brake scream, brake shoe wear and brake torque can not be controlled continuously. As a new type of wire brake, magnetorheological brake can make up for these shortcomings. It has the advantages of low energy consumption, short braking time, small wear of parts, controllable braking torque, and easy to integrate new control technology. These advantages are in line with the brake requirements of the belt conveyor. To solve this problem, this paper improves the traditional single-coil hybrid magnetorheological brake, designs a new type of double-coil side-mounted magneto-rheological brake, and applies it to the braking system of a small down-load belt conveyor. In order to achieve the purpose of lightweight design while increasing the braking torque of Mr brake. Firstly, the braking mechanism of magneto-rheological brake is numerically simulated from the microscopic point of view, and the dynamic simulation model of magnetic particles in the magnetorheological fluid is built, and the effects of the integral number and magnetic field intensity of the magnetorheological fluid on the chain microstructure are studied. The shear process of magnetic particles under the action of magnetic field is numerically simulated. Secondly, the braking torque of a small down belt conveyor is calculated. According to the required braking moment, a magnetic rheological brake with two coils is designed. Based on the Herscher-Bulkley model, the torque model of the double-coil side-mounted magneto-rheological brake is derived, and the corresponding magnetic circuit design method is proposed. At the same time, in order to improve the braking torque of the double-coil side-mounted magnetorheological brake and realize the lightweight design, a joint optimization design method based on finite element analysis and multi-objective genetic algorithm is proposed. By using this method, the Pareto noninferior solution set of magnetic circuit structure is obtained, and the optimal magnetic circuit structure parameters of the brake are obtained by selecting the Pareto noninferior solution by using the combinatorial weighting method. Finally, by modifying the Bingham model of MRF, the equivalent apparent viscosity of MRF is obtained, which is regarded as an important intermediate variable of magnetic field, flow field and temperature field. In addition, the kinematics equation of the double-coil side-mounted magneto-rheological brake is established. Based on Maxwell's equation, the Navier-Stokes continuity equation and the conjugate heat transfer equation are established. The simulation model of magneto-fluid-solid-heat multi-physical field coupling of magneto-rheological brake was established by sequential coupling method. The steady state temperature distribution of a new type of magneto-rheological brake with two coils was obtained under the non-braking condition of the belt conveyor. And the distribution of magnetic field, flow field and transient temperature field under braking condition. The results show that the new type of magnetorheological brake can meet the brake requirements of small downloadable belt conveyors. The research in this paper can provide a reference for the structure design, magnetic circuit design and optimization analysis of the MRF brake, and also provide a new option for the braking mode of the downward belt conveyor.
【學(xué)位授予單位】:太原科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TH222
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄔思敏;孟文俊;李淑君;王堯;徐成功;;雙線圈旁置式新型磁流變制動(dòng)器的設(shè)計(jì)與優(yōu)化[J];工程設(shè)計(jì)學(xué)報(bào);2016年05期
2 喬臻;黃金;;圓盤式磁流變制動(dòng)器磁飽和有限元分析[J];機(jī)械傳動(dòng);2016年05期
3 李軍霞;寇子明;;下運(yùn)帶式輸送機(jī)復(fù)合制動(dòng)系統(tǒng)仿真及試驗(yàn)研究[J];煤炭學(xué)報(bào);2015年S2期
4 沙樹靜;張賀;張和權(quán);;雙盤式磁流變制動(dòng)器的結(jié)構(gòu)設(shè)計(jì)和性能研究[J];機(jī)械設(shè)計(jì)與制造;2015年11期
5 陳德民;蔡青格;張宏;;多筒式磁流變液離合器的設(shè)計(jì)及仿真[J];裝甲兵工程學(xué)院學(xué)報(bào);2015年04期
6 黃金;喬臻;;形狀記憶合金驅(qū)動(dòng)的圓盤式磁流變液變速傳動(dòng)裝置磁場有限元分析[J];機(jī)械傳動(dòng);2015年07期
7 祝世興;吳偉;;磁流變液在阻尼通道處的流變特性分析[J];機(jī)床與液壓;2015年13期
8 鄧召學(xué);鄭玲;李以農(nóng);張東東;付江華;陳代軍;;基于NSGA-Ⅱ算法的磁流變懸置磁路多目標(biāo)優(yōu)化[J];汽車工程;2015年05期
9 田朝陽;張江濤;郭志軍;王志偉;;圓盤式磁流變液制動(dòng)器理論設(shè)計(jì)與仿真分析[J];拖拉機(jī)與農(nóng)用運(yùn)輸車;2014年03期
10 王健;劉洲;王凱;;車用磁流變液制動(dòng)器的設(shè)計(jì)與磁路分析[J];礦山機(jī)械;2014年01期
相關(guān)博士學(xué)位論文 前1條
1 易成建;磁流變液:制備、性能測試與本構(gòu)模型[D];重慶大學(xué);2011年
相關(guān)碩士學(xué)位論文 前5條
1 王冬冬;硅油基磁流變液傳動(dòng)特性研究[D];中國礦業(yè)大學(xué);2015年
2 劉旭輝;車用自增力式磁流變液制動(dòng)器研究[D];清華大學(xué);2014年
3 霍國濤;下運(yùn)帶式輸送機(jī)液壓軟制動(dòng)系統(tǒng)的應(yīng)用研究[D];太原理工大學(xué);2014年
4 張法生;地鐵車輛磁流變制動(dòng)技術(shù)研究[D];西南交通大學(xué);2014年
5 宋宇;磁流變液ABS制動(dòng)器結(jié)構(gòu)研究與性能仿真[D];東北林業(yè)大學(xué);2011年
,本文編號(hào):2013161
本文鏈接:http://www.sikaile.net/jixiegongchenglunwen/2013161.html