空間機械臂關(guān)節(jié)復(fù)合行星傳動系統(tǒng)動力學(xué)研究
本文選題:復(fù)合行星齒輪傳動系統(tǒng) 切入點:時變嚙合剛度 出處:《哈爾濱工業(yè)大學(xué)》2017年碩士論文
【摘要】:隨著航空航天技術(shù)的發(fā)展,要求提高空間機械臂的平穩(wěn)性、安全性,這就對空間機械臂關(guān)節(jié)系統(tǒng)提出了更高要求。行星齒輪傳動系統(tǒng),作為現(xiàn)代廣泛使用的傳動系統(tǒng)之一,以其承載能力大、可靠性高、結(jié)構(gòu)緊湊、傳動比大、壽命長等顯著優(yōu)點,應(yīng)用于多種長壽命周期的大型空間機械臂關(guān)節(jié)設(shè)備中。因此,本文以復(fù)合行星齒輪傳動系統(tǒng)作為研究對象,研究其動力學(xué)特性,為設(shè)計具有優(yōu)良動力學(xué)性能的機械臂關(guān)節(jié)提供指導(dǎo)。進(jìn)行傳動系統(tǒng)動力學(xué)分析,需要考慮嚙合剛度、阻尼等非線性因素,建立系統(tǒng)動力學(xué)模型。本文對齒輪時變嚙合剛度進(jìn)行研究,基于齒條刀具范成法加工齒輪原理,推導(dǎo)精確齒廓曲線。采用APDL語言,建立具有精確齒廓的齒輪嚙合模型,對模型進(jìn)行接觸區(qū)網(wǎng)格細(xì)化,通過計算不同相位的齒輪嚙合剛度,得到一個嚙合周期的齒輪時變嚙合剛度。分析不同扭矩條件下的時變嚙合剛度變化,為行星齒輪動力學(xué)研究提供精確的參數(shù)。綜合考慮構(gòu)件支撐剛度、嚙合剛度、阻尼、嚙合綜合誤差等因素,利用集中參數(shù)法分別建立復(fù)合行星齒輪傳動系統(tǒng)中不同傳動形式的平移—扭轉(zhuǎn)耦合動力學(xué)模型;谀K化思想,建立通用的四級模塊,通過集成各級模塊生成復(fù)合行星齒輪傳動系統(tǒng)的非線性動力學(xué)微分方程組;谀K化思想,對復(fù)合行星齒輪傳動系統(tǒng)固有特性進(jìn)行研究。將傳動系統(tǒng)質(zhì)量矩陣和剛度矩陣按照傳動形式分為三個模塊。編寫具有通用性的固有特性計算程序,并以空間機械臂關(guān)節(jié)用復(fù)合行星傳動系統(tǒng)為例,計算其固有頻率和振動矢量,并分析固有頻率的參數(shù)敏感度。分析復(fù)合行星齒輪傳動系統(tǒng)的動力學(xué)特性,使用數(shù)值積分法求解傳動系統(tǒng)的動態(tài)響應(yīng),基于MATLAB的GUI模塊設(shè)計應(yīng)用于機械臂用復(fù)合行星齒輪傳動系統(tǒng)的模塊化動力學(xué)仿真平臺。該傳動系統(tǒng)模塊化動力學(xué)仿真平臺集動力學(xué)模型建立和動力學(xué)特性計算于一體,并以復(fù)合行星齒輪傳動系統(tǒng)為例驗證仿真平臺的適用性。
[Abstract]:With the development of aerospace technology, it is required to improve the stability and safety of space manipulator, which puts forward higher requirements for the joint system of space manipulator. Planetary gear transmission system is one of the widely used transmission systems in modern times. Because of its advantages of large bearing capacity, high reliability, compact structure, large transmission ratio and long life, it is used in many kinds of large space mechanical arm joint equipments with long life cycle. In this paper, the dynamic characteristics of composite planetary gear transmission system are studied to provide guidance for the design of mechanical arm joints with excellent dynamic performance. In order to carry out dynamic analysis of transmission system, meshing stiffness should be considered. In this paper, the time-varying meshing stiffness of gear is studied, and the accurate tooth profile curve is deduced based on the principle of gear machining with rack cutting tool. A gear meshing model with accurate tooth profile is established. The contact area mesh of the model is refined, and the meshing stiffness of gears with different phases is calculated. The time-varying meshing stiffness of gears with a meshing period is obtained. The variation of time-varying meshing stiffness under different torque conditions is analyzed to provide precise parameters for the study of planetary gear dynamics. By using the lumped parameter method, the translation torsion coupling dynamic models of different transmission forms in the composite planetary gear transmission system are established by using the meshing synthetic error and other factors. Based on the idea of modularization, a general four-level module is established. The nonlinear dynamic differential equations of composite planetary gear transmission system are generated by integrating all levels of modules. The inherent characteristics of composite planetary gear transmission system are studied. The mass matrix and stiffness matrix of transmission system are divided into three modules according to the transmission form. Taking the composite planetary transmission system for space manipulator as an example, the natural frequency and vibration vector are calculated, and the parameter sensitivity of the natural frequency is analyzed, and the dynamic characteristics of the composite planetary gear transmission system are analyzed. The numerical integration method is used to solve the dynamic response of the transmission system. The design of the GUI module based on MATLAB is applied to the modular dynamic simulation platform of the composite planetary gear transmission system for the manipulator. The modular dynamic simulation platform of the transmission system integrates the establishment of the dynamic model and the calculation of the dynamic characteristics. The applicability of the simulation platform is verified by taking the composite planetary gear transmission system as an example.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TH132.425
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 戴振東;彭福軍;;空間機器人的研究與仿壁虎機器人關(guān)鍵技術(shù)[J];科學(xué)通報;2015年32期
2 劉宏;蔣再男;劉業(yè)超;;空間機械臂技術(shù)發(fā)展綜述[J];載人航天;2015年05期
3 張忠剛;方斌;徐明;;基于LMS Motion的多級行星齒輪傳動系統(tǒng)動力學(xué)仿真[J];機械傳動;2015年09期
4 陳占鋒;程剛;陳曦暉;;復(fù)合行星齒輪固有特性分析[J];煤礦機械;2015年09期
5 賀朝霞;常樂浩;劉嵐;;耦合箱體振動的行星齒輪傳動系統(tǒng)動態(tài)響應(yīng)分析[J];華南理工大學(xué)學(xué)報(自然科學(xué)版);2015年09期
6 馮松;毛軍紅;謝友柏;;齒面磨損對齒輪嚙合剛度影響的計算與分析[J];機械工程學(xué)報;2015年15期
7 邵毅敏;王新龍;劉靜;陳再剛;;基于邊緣接觸時變剛度的輪齒表面剝落動力學(xué)模型與響應(yīng)特征[J];振動與沖擊;2014年15期
8 劉志全;危清清;王耀兵;;空間機械臂關(guān)節(jié)精細(xì)動力學(xué)模型的建立及關(guān)節(jié)力矩控制[J];宇航學(xué)報;2014年06期
9 楊長輝;吳燦元;譚勇虎;許洪斌;;大功率循環(huán)泵行星齒輪箱耦合動態(tài)特性分析[J];機械傳動;2013年11期
10 林騰蛟;王丹華;冉雄濤;趙俊渝;;多級齒輪傳動系統(tǒng)耦合非線性振動特性分析[J];振動與沖擊;2013年17期
相關(guān)碩士學(xué)位論文 前1條
1 徐冬梅;多級行星傳動系統(tǒng)模塊化動力學(xué)仿真平臺設(shè)計[D];哈爾濱工業(yè)大學(xué);2012年
,本文編號:1673960
本文鏈接:http://www.sikaile.net/jixiegongchenglunwen/1673960.html