太陽(yáng)能跨季節(jié)蓄熱實(shí)驗(yàn)系統(tǒng)設(shè)計(jì)與實(shí)驗(yàn)研究
本文選題:太陽(yáng)能 + 蓄熱; 參考:《合肥工業(yè)大學(xué)》2017年碩士論文
【摘要】:能源是現(xiàn)代化建設(shè)的基礎(chǔ)和動(dòng)力,能源供應(yīng)、安全關(guān)乎我國(guó)現(xiàn)代化建設(shè)全局。當(dāng)前,世界政治、經(jīng)濟(jì)格局深刻調(diào)整,能源供求關(guān)系亦隨之發(fā)生深刻的變化。我國(guó)能源資源約束日益加劇,生態(tài)環(huán)境問(wèn)題突出,調(diào)整結(jié)構(gòu)、提高能效和保障能源安全的壓力進(jìn)一步加大,能源發(fā)展面臨一系列新問(wèn)題、新挑戰(zhàn)。太陽(yáng)能作為一種取之不盡的清潔性能源,其高效利用對(duì)于解決能源問(wèn)題和環(huán)境問(wèn)題有重要的意義。經(jīng)過(guò)將近20年的高速發(fā)展,我國(guó)已經(jīng)成為太陽(yáng)能熱利用生產(chǎn)與應(yīng)用第一大國(guó)。但是,當(dāng)前太陽(yáng)能蓄熱采暖發(fā)展仍面臨諸多挑戰(zhàn),大規(guī)模蓄熱采暖示范工程較少、較高的土地使用成本、項(xiàng)目初投資巨大而經(jīng)濟(jì)性較差以及跨季節(jié)儲(chǔ)熱技術(shù)復(fù)雜程度較高等因素嚴(yán)重制約項(xiàng)目的推廣。作為蓄熱系統(tǒng)的關(guān)鍵組件,水箱和保溫材料的性能會(huì)嚴(yán)重影響系統(tǒng)的蓄、放熱量,其成本亦在整個(gè)蓄熱系統(tǒng)的投資中占有相當(dāng)大的比例。蓄熱量較小時(shí),圓柱形水箱由于其較低的成本以及良好的保溫性能而得到廣泛應(yīng)用,目前國(guó)內(nèi)外學(xué)者對(duì)圓柱形水箱工作過(guò)程的研究已經(jīng)趨近于成熟。但是當(dāng)蓄熱量較大時(shí),圓柱形水箱的成本劇烈上升,且其壽命和性能均難以達(dá)到要求。矩形水箱具有強(qiáng)度高、重量輕等優(yōu)點(diǎn),在工程中可以根據(jù)場(chǎng)地情況現(xiàn)場(chǎng)拼裝焊接,較圓柱形水箱有更高的土地利用率以及更低的成本,在大規(guī)模蓄熱方面有較為廣闊的應(yīng)用前景。本實(shí)驗(yàn)平臺(tái)采用矩形水箱作為蓄熱容器,在實(shí)際工況條件下對(duì)矩形水箱的保溫過(guò)程和蓄熱過(guò)程進(jìn)行數(shù)值模擬和實(shí)驗(yàn)分析。課題的主要工作有:1.分析了蓄熱技術(shù)的應(yīng)用范圍和儲(chǔ)熱水箱研究現(xiàn)狀,論證太陽(yáng)能蓄熱系統(tǒng)的社會(huì)效益和環(huán)境效益;2.儲(chǔ)熱方案的確定,并對(duì)系統(tǒng)部件進(jìn)行選型計(jì)算;3.建立了矩形水箱的有限元仿真模型,研究了入水口不同流速對(duì)水箱蓄熱性能的影響以及水箱在保溫過(guò)程形成溫度分層的機(jī)理,并在實(shí)際工況下進(jìn)行了實(shí)驗(yàn)測(cè)試;4.建立了箱體保溫材料有限元仿真模型,箱體保溫材料厚度和結(jié)構(gòu)對(duì)其保溫性能的影響;5.通過(guò)仿真,研究了管路保溫材料厚度對(duì)其性能的影響。研究結(jié)果表明:1、入口處流速在低于0.1m/s的情況下,水箱在蓄熱過(guò)程即形成良好的溫度分層,水箱上部水溫也能夠達(dá)到較高的水平,水箱有用能數(shù)量較多,且品質(zhì)較好;2、隨著入口處流速的升高(大于0.1m/s),水流沖擊深度不斷加大,水箱內(nèi)部冷熱摻混加強(qiáng),水箱在蓄熱過(guò)程中不再形成溫度分層,當(dāng)流速介于0.3m/s~0.4m/s時(shí),水箱內(nèi)部會(huì)形成“低溫死角”,當(dāng)流速大于0.4m/s時(shí),“低溫死角”消失,水箱中部會(huì)形成“低溫水團(tuán)”,隨著入口處水溫的上升,水箱出口處流體溫度升高,致使太陽(yáng)能集熱器和板式換熱器效率下降;3、當(dāng)前環(huán)境條件下,箱體保溫材料厚度達(dá)到80mm時(shí),外表面溫度與環(huán)境溫差會(huì)下降至3℃以內(nèi),可以保證較為良好的保溫效果;4、箱體保溫材料外側(cè)圓弧面與平面為直接過(guò)渡,由于形狀發(fā)生突變,該處熱流密度較大,對(duì)保溫性能影響較大,使用圓角過(guò)渡,能夠有效降低該處的對(duì)流換熱強(qiáng)度;5、對(duì)于當(dāng)前系統(tǒng)管路,其外側(cè)保溫材料(橡塑保溫棉)為厚度30mm時(shí),外表面與環(huán)境溫差為2.638℃,能夠達(dá)到良好的保溫效果;6、太陽(yáng)能蓄熱實(shí)驗(yàn)系統(tǒng)生命周期范圍內(nèi),每噸蓄熱量能夠節(jié)約標(biāo)準(zhǔn)煤5922.87t,減少二氧化、二氧化硫、煙塵和氮氧化物排放量分別為15.767t、5.92kg、5.92kg和8.59kg,具有良好的社會(huì)效益和生態(tài)效益。
[Abstract]:Energy is the foundation and motive force of modernization construction. Energy supply and safety are related to the overall situation of China's modernization. At present, the world politics, the economic pattern has been deeply adjusted, and the relationship of energy supply and demand has also undergone profound changes. The constraints of energy resources in our country are becoming more and more serious, the ecological environment is highlighted, the structure is adjusted, energy efficiency and the security of energy security are improved. The energy development is facing a series of new problems and new challenges. As an inexhaustible clean energy source, the efficient utilization of solar energy is of great significance to solve the problem of energy and environment. After nearly 20 years of rapid development, China has become the first country in the production and application of solar heat utilization. At present, the development of solar heating and heating still faces many challenges. The large-scale heat storage and heating demonstration project is less. The high cost of land use, the huge initial investment of the project, the poor economy and the high complexity of the cross season heat storage technology restrict the popularization of the project seriously. The performance of the material will seriously affect the storage and heat release of the system, and its cost also occupies a considerable proportion in the investment of the whole heat storage system. The cylindrical tank is widely used because of its low cost and good thermal insulation performance. But when the heat storage is large, the cost of the cylindrical tank rises sharply, and its life and performance are hard to meet the requirements. The rectangular tank has the advantages of high strength and light weight. In the project, it can be assembled and welded according to the site conditions, and has a higher land use rate and lower cost than the cylindrical tank in the large gauge. The experimental platform uses a rectangular tank as a regenerative container. The heat preservation process and heat storage process of a rectangular tank are simulated and experimentally analyzed under the actual working conditions. The main tasks are as follows: 1. the application scope of the heat storage technology and the research status of the heat storage tank are analyzed. The social and environmental benefits of the solar energy storage system; 2. the determination of the heat storage scheme, and the selection and calculation of the system components; 3. the finite element simulation model of the rectangular water tank is established, and the influence of the different flow velocity on the heat storage capacity of the water tank and the mechanism of the stratification of the temperature of the water tank in the heat preservation process are studied and under the actual working conditions. The experimental test was carried out; 4. the finite element simulation model of box insulation material was set up, the influence of the thickness and structure of the insulation material on the insulation property of the box was established. 5. through the simulation, the influence of the thickness of the heat insulation material on the performance of the box was studied. The results showed that 1, the flow velocity at the entrance was lower than 0.1m/s, and the water tank was formed in the heat storage process. With good temperature stratification, the upper water temperature of the water tank can reach a higher level, the water tank has more useful energy and better quality. 2, with the increase of the flow velocity at the entrance (greater than 0.1m/s), the impact depth of the water flow is increasing, the cold and heat in the water tank is reinforced, and the water tank does not form the temperature stratification during the heat storage process, when the flow velocity is in the 0.3m/s~0.4m. At /s, the "low temperature dead angle" will be formed inside the tank. When the flow rate is greater than 0.4m/s, the "low temperature dead angle" disappears and the middle of the water tank will form a "low temperature water mass". As the water temperature rises at the entrance, the temperature of the outlet of the water tank rises, resulting in the decrease of the efficiency of the solar collector and the plate heat exchanger; 3, under the current environmental conditions, the insulation material of the box body When the thickness reaches 80mm, the outer surface temperature and the ambient temperature difference will fall to less than 3 C, which can ensure better insulation effect. 4, the outer circular arc surface of the insulation material of the box is directly transferred to the plane. Because of the sudden change in the shape, the heat flow density is larger, the heat insulation performance is larger and the corner transition is used, which can effectively reduce the location of the place. Convection heat transfer strength; 5, for the current system pipeline, the external thermal insulation material (rubber and plastic insulation cotton) is 30mm thickness, the external surface and the environment temperature difference is 2.638 degrees, can achieve good thermal insulation effect. 6, solar heat storage experimental system in the life cycle range, each ton of heat storage can save standard coal 5922.87t, reduce two oxidation, sulfur dioxide, smoke, smoke. The emissions of dust and nitrogen oxides are 15.767t, 5.92kg, 5.92kg and 8.59kg respectively, which have good social and ecological benefits.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TK513.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 劉俊躍;夏建軍;劉剛;;民用建筑能耗指標(biāo)體系確定研究[J];建設(shè)科技;2015年14期
2 楊征;陳海生;王亮;盛勇;李文;左志濤;譚春青;;豎直圓柱形水箱保溫過(guò)程熱分層現(xiàn)象與機(jī)理研究[J];中國(guó)電機(jī)工程學(xué)報(bào);2015年06期
3 邱步;張小松;;具有內(nèi)部熱源的儲(chǔ)熱水箱混合過(guò)程研究[J];太陽(yáng)能學(xué)報(bào);2013年10期
4 李舒宏;聞才;張小松;周曉林;;入水口結(jié)構(gòu)對(duì)太陽(yáng)能儲(chǔ)熱水箱用能特性的影響研究[J];太陽(yáng)能學(xué)報(bào);2013年04期
5 於慧姝;陸春林;金蘇敏;;熱泵熱水器蓄熱水箱的漏熱損失分析[J];流體機(jī)械;2010年11期
6 王登甲;劉艷峰;;太陽(yáng)能熱水采暖蓄熱水箱溫度分層分析[J];建筑熱能通風(fēng)空調(diào);2010年01期
7 韓延民;王如竹;代彥軍;姚春妮;熊安華;;臥式熱分區(qū)太陽(yáng)能水箱內(nèi)的貯熱性能分析及試驗(yàn)研究[J];太陽(yáng)能學(xué)報(bào);2008年03期
8 陳德明;徐剛;;太陽(yáng)能熱利用技術(shù)概況[J];物理;2007年11期
9 于國(guó)清;湯金華;鄒志軍;;太陽(yáng)能熱水系統(tǒng)蓄熱水箱溫度分層作用研究[J];建筑科學(xué);2007年04期
,本文編號(hào):1977652
本文鏈接:http://www.sikaile.net/jingjilunwen/zhengzhijingjixuelunwen/1977652.html