天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于貝葉斯網(wǎng)絡(luò)的上市公司財務(wù)危機(jī)預(yù)警研究

發(fā)布時間:2018-08-09 08:10
【摘要】:自2007年,美國次貸危機(jī)引發(fā)的金融危機(jī)席卷全球,使得各國金融市場劇烈震蕩,經(jīng)濟(jì)也深受其累。然而,2009年爆發(fā)的歐債危機(jī)再一次將全球經(jīng)濟(jì)拖入泥潭。這不僅使市場風(fēng)險急劇上升,也使風(fēng)險管理面臨更加嚴(yán)峻的挑戰(zhàn)。因此,如何強(qiáng)化風(fēng)險管理意識,提高風(fēng)險預(yù)測精度,維護(hù)經(jīng)濟(jì)社會的和諧穩(wěn)定,既是政府經(jīng)濟(jì)管理部門面臨的主要任務(wù),也受到了學(xué)術(shù)界的廣泛關(guān)注。值得注意的是,隨著中國證券市場的繁榮發(fā)展,越來越多的公司通過上市獲得資金以擴(kuò)大發(fā)展,上市公司已然成為我國經(jīng)濟(jì)發(fā)展的核心力量,加上財務(wù)危機(jī)在企業(yè)集團(tuán)內(nèi)部具有傳染性,進(jìn)一步引起政府經(jīng)濟(jì)管理部門和投資者等利益相關(guān)者對中國上市公司財務(wù)危機(jī)的高度關(guān)注。上市公司一旦發(fā)生信用違約,不僅會給投資者帶來巨大損失,甚至還可能導(dǎo)致企業(yè)破產(chǎn)、社會動蕩等嚴(yán)重后果。因此,構(gòu)建科學(xué)有效地財務(wù)危機(jī)預(yù)警方法,具有重要的現(xiàn)實意義;诖,本文以我國上市公司為研究對象,首先,運(yùn)用正態(tài)性檢驗、參數(shù)與非參數(shù)檢驗和多重共線性檢驗提取出能顯著刻畫上市公司財務(wù)危機(jī)的特征指標(biāo);進(jìn)而,既引入NB模型克服BN在初始網(wǎng)絡(luò)結(jié)構(gòu)學(xué)習(xí)上過于依賴樣本數(shù)據(jù)導(dǎo)致網(wǎng)絡(luò)結(jié)構(gòu)學(xué)習(xí)復(fù)雜度增加的局限性,同時又引入基于約束的TPDA算法克服NB模型在結(jié)構(gòu)學(xué)習(xí)中過度依賴的條件獨立假設(shè)的局限性,構(gòu)造出一種改進(jìn)的貝葉斯網(wǎng)絡(luò)模型——TPDA-NB模型對上市公司財務(wù)危機(jī)進(jìn)行預(yù)警研究,并運(yùn)用性能評價指標(biāo)將TPDA-NB模型與NB模型、Logistic模型、神經(jīng)網(wǎng)絡(luò)模型進(jìn)行對比分析;最后,運(yùn)用配對樣本T檢驗對各模型預(yù)測精度的差異性進(jìn)行顯著性檢驗,實證研究結(jié)果如下:(1)將Logistic模型與NB模型、TPDA-NB模型對比發(fā)現(xiàn),在預(yù)測精度與預(yù)測穩(wěn)定性上,不僅Logistic模型與NB模型之間存在顯著性差異,而且Logistic模型與TPDA-NB模型之間的差異更加顯著;(2)將神經(jīng)網(wǎng)絡(luò)模型與NB模型、TPDA-NB模型對比發(fā)現(xiàn),在預(yù)測精度與預(yù)測穩(wěn)定性方面,神經(jīng)網(wǎng)絡(luò)模型與TPDA-NB模型之間存在顯著差異,而與NB模型之間的差異性較弱;(3)更為重要的是,TPDA-NB模型能夠有效地提升NB模型對上市公司財務(wù)危機(jī)的預(yù)測精度和穩(wěn)定性。以上實證研究結(jié)果表明:運(yùn)用TPDA-NB模型能夠較為準(zhǔn)確的預(yù)測我國上市公司財務(wù)危機(jī),這在風(fēng)險管理領(lǐng)域具有廣闊的應(yīng)用前景。對于投資者而言,能夠運(yùn)用TPDA-NB模型提前捕捉風(fēng)險信號,進(jìn)而做出合理的投資決策以規(guī)避風(fēng)險帶來的損失;對于相關(guān)的政府經(jīng)濟(jì)管理者而言,能夠運(yùn)用TPDA-NB模型對可能發(fā)生風(fēng)險問題的領(lǐng)域進(jìn)行預(yù)測,及時制定合理的監(jiān)管政策,從而穩(wěn)定市場秩序,促進(jìn)經(jīng)濟(jì)的持續(xù)健康發(fā)展。
[Abstract]:Since 2007, the financial crisis caused by the subprime mortgage crisis in the United States has swept the world. However, the European debt crisis in 2009 once again dragged the global economy into a quagmire. This not only causes the market risk to rise sharply, but also makes the risk management face more severe challenge. Therefore, how to strengthen the awareness of risk management, improve the accuracy of risk prediction, and maintain the economic and social harmony and stability is not only the main task of the government economic management department, but also has been widely concerned by the academic community. It is worth noting that with the prosperity and development of China's securities market, more and more companies have obtained funds through listing to expand their development, and listed companies have become the core force of our country's economic development. In addition, the financial crisis is contagious within the enterprise group, which causes the government economic management departments and investors and other stakeholders to pay close attention to the financial crisis of listed companies in China. Once a listed company defaults on credit, it will not only bring huge losses to investors, but also may lead to enterprise bankruptcy, social unrest and other serious consequences. Therefore, the construction of scientific and effective financial crisis warning method has important practical significance. Based on this, this paper takes the listed companies of our country as the research object. Firstly, using normal test, parameter and non-parameter test and multiple collinear test, we extract the characteristic indexes which can depict the financial crisis of listed companies. The NB model is introduced to overcome the limitation that the learning complexity of the network structure is increased due to the excessive reliance on the sample data in the learning of the initial network structure of BN. At the same time, the constraint based TPDA algorithm is introduced to overcome the limitations of the conditional independence hypothesis that NB model is over-dependent in structure learning, and an improved Bayesian network model, TPDA-NB model, is constructed to study the financial crisis of listed companies. TPDA-NB model, NB model, Logistic model and neural network model are compared and analyzed by performance evaluation index. Finally, the difference of prediction accuracy of each model is tested by paired sample T test. The empirical results are as follows: (1) comparing Logistic model with NB model TPDA-NB model, it is found that there are significant differences not only between Logistic model and NB model, but also between Logistic model and NB model in prediction accuracy and prediction stability. The difference between the Logistic model and the TPDA-NB model is more significant. (2) comparing the neural network model with the NB model TPDA-NB model, it is found that there are significant differences between the neural network model and the TPDA-NB model in terms of prediction accuracy and prediction stability. But the difference between NB model and NB model is weak. (3) more important is that TPDA-NB model can effectively improve the accuracy and stability of NB model for financial crisis prediction of listed companies. The above empirical results show that the TPDA-NB model can accurately predict the financial crisis of listed companies in China, which has a broad application prospect in the field of risk management. For investors, the TPDA-NB model can be used to capture the risk signal in advance, and then make reasonable investment decisions to avoid the risk of loss; for the relevant government economic managers, The TPDA-NB model can be used to predict the areas where risk problems may occur, to formulate reasonable supervision policies in time, to stabilize the market order and to promote the sustained and healthy development of the economy.
【學(xué)位授予單位】:成都理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:F275

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 趙辰;南星恒;;基于MEA-BP神經(jīng)網(wǎng)絡(luò)的財務(wù)危機(jī)預(yù)警研究[J];財會通訊;2016年01期

2 趙文平;王園園;張一楠;周達(dá)培;;基于貝葉斯網(wǎng)絡(luò)的上市公司財務(wù)風(fēng)險預(yù)警模型[J];財會月刊;2015年23期

3 徐凱;黃迅;劉金彬;;基于最優(yōu)模糊SVM的財務(wù)危機(jī)預(yù)警研究——來自成渝經(jīng)濟(jì)區(qū)上市公司的經(jīng)驗證據(jù)[J];會計之友;2015年12期

4 洪文洲;王旭霞;馮海旗;;基于Logistic回歸模型的上市公司財務(wù)報告舞弊識別研究[J];中國管理科學(xué);2014年S1期

5 潘攀;淳偉德;謝琴;;基于AdaBoost整體模型的公司財務(wù)危機(jī)預(yù)測研究[J];軟科學(xué);2013年12期

6 鮑新中;楊宜;;基于聚類-粗糙集-神經(jīng)網(wǎng)絡(luò)的企業(yè)財務(wù)危機(jī)預(yù)警[J];系統(tǒng)管理學(xué)報;2013年03期

7 葉煥倬;楊青;汪勇華;;智能財務(wù)危機(jī)預(yù)警與原因診斷方法研究——基于自適應(yīng)貝葉斯網(wǎng)絡(luò)模型SABNM的探析[J];審計與經(jīng)濟(jì)研究;2013年03期

8 黃迅;張穎;林宇;;中國海外上市公司的PCA-SVM財務(wù)危機(jī)預(yù)警研究[J];成都理工大學(xué)學(xué)報(社會科學(xué)版);2013年01期

9 胡心瀚;葉五一;繆柏其;;上市公司信用風(fēng)險分析模型中的變量選擇[J];數(shù)理統(tǒng)計與管理;2012年06期

10 孔英會;景美麗;;基于混淆矩陣和集成學(xué)習(xí)的分類方法研究[J];計算機(jī)工程與科學(xué);2012年06期



本文編號:2173465

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/jingjilunwen/xmjj/2173465.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶83171***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com