新型協(xié)同轉(zhuǎn)動(dòng)四節(jié)點(diǎn)四邊形復(fù)合材料殼單元
[Abstract]:In this paper, a novel cooperative rotating quadrilateral composite shell element is developed. The cooperative rotation method uses a local coordinate system which rotates with the rotation of the rigid body of the element and is defined by the bisection line of two diagonal angles of the quadrilateral, and only considers the effect of element deformation when calculating the element node variables. Therefore, the element calculation formula in local coordinate system is simplified under the condition that rigid body displacement is excluded. The vector rotation variable greatly simplifies the conversion between the local node variable and the global node variable of the unit, and makes all the node variables can be updated directly by simple addition. Therefore, the computational efficiency of the element can be improved when updating the tangent stiffness matrix. Unlike other cooperative rotation methods, the tangent stiffness matrix of the element can be obtained by calculating the quadratic differential of the energy mixing functional to the nodal variables, and its differential order is interchangeable. The element tangent stiffness matrix obtained is symmetric. In the analysis of small strain and large rotation problem in laminated composite laminated plate and shell structure, the element formula based on cooperative rotation frame and the first order shear deformation theory has good computational performance. The locking problem will affect the calculation accuracy and efficiency of the unit, in order to reduce its adverse effects, In order to improve the computational efficiency of finite elements, the assumed strain method obtained by the reduced order integration method is used to replace the membrane strain and the shear strain in the potential energy functional of the element. In the process of nonlinear incremental calculation, the generalized displacement control method is used to track the nonlinear equilibrium path after buckling. Finally, through the structural analysis of some classical composite plate and shell problems, it is proved that the element has satisfactory reliability, convergence and computational efficiency.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TU599
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條
1 李忠學(xué);劉永方;徐晉;葉青會(huì);俞冬良;;穩(wěn)定化的新型協(xié)同轉(zhuǎn)動(dòng)四邊形曲殼單元[J];工程力學(xué);2010年09期
2 俞冬良;葉青會(huì);李忠學(xué);;高層建筑中的仿生學(xué)原理及應(yīng)用[J];結(jié)構(gòu)工程師;2009年06期
3 馬汝光;時(shí)磊;劉倍利;;復(fù)合土釘支護(hù)變形數(shù)值模擬研究[J];山西建筑;2009年08期
4 宋振森;沈祖炎;羅永峰;;求解預(yù)定位移水平的改進(jìn)弧長(zhǎng)法[J];計(jì)算力學(xué)學(xué)報(bào);2007年04期
5 李忠學(xué);;梁板殼有限單元中的各種閉鎖現(xiàn)象及解決方法[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2007年07期
6 李忠學(xué);;采用矢量型轉(zhuǎn)動(dòng)變量的二維協(xié)同轉(zhuǎn)動(dòng)梁元法[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2006年07期
7 高光藩,丁信偉;薄殼結(jié)構(gòu)分析有限元方法[J];石油化工設(shè)備;2002年05期
8 岑松,龍馭球,姚振漢;基于一階剪切變形理論的新型復(fù)合材料層合板單元[J];工程力學(xué);2002年01期
9 朱健生,何君毅,陳火紅,崔德剛;用張量分量混合插值的復(fù)合材料殼元公式[J];航空學(xué)報(bào);1999年01期
10 李忠學(xué),沈祖炎,鄧長(zhǎng)根;廣義位移控制法在動(dòng)力穩(wěn)定問(wèn)題中的應(yīng)用[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);1998年06期
,本文編號(hào):2303448
本文鏈接:http://www.sikaile.net/jingjilunwen/jianzhujingjilunwen/2303448.html