小通道套管換熱器內(nèi)流體流動(dòng)與傳熱性能研究
本文選題:小通道 + 套管換熱器; 參考:《東南大學(xué)》2015年碩士論文
【摘要】:套管換熱器作為一種傳熱性能優(yōu)良的換熱設(shè)備,在化工、能源、制冷等領(lǐng)域具有廣泛應(yīng)用,再加上換熱器材料價(jià)格的上漲,使得緊湊高效的換熱器的開(kāi)發(fā)和研究成為當(dāng)下熱點(diǎn)。因此,本文提出一種4mm小通道套管換熱器,采用數(shù)值模擬和試驗(yàn)研究相結(jié)合的方法對(duì)該換熱器內(nèi)流體流動(dòng)和傳熱性能進(jìn)行了分析,并對(duì)小通道的分布進(jìn)行研究,再將其與現(xiàn)有同軸套管換熱器進(jìn)行試驗(yàn)對(duì)比,具體研究?jī)?nèi)容包括:以現(xiàn)有的同軸式套管換熱器性能為指標(biāo),外管徑為20mm前提下,分別對(duì)小通道管徑為4mm、5mm的換熱器進(jìn)行數(shù)值模擬研究,并根據(jù)數(shù)值模擬的結(jié)果詳細(xì)分析換熱器采用小通道的換熱管后其內(nèi)部流體流動(dòng)和傳熱特性的變化。數(shù)值模擬結(jié)果表明:換熱器的小通道管徑由5mm減小到4mmm后,雖然換熱管增加了3.66%的銅材,且壓力損失也隨之增加,但換熱器的換熱面積增加了6.63%,同時(shí)換熱管內(nèi)的換熱系數(shù)和換熱量也得到了增加,可以提高換熱器的換熱性能。換熱器采用4mm管徑的小通道后,本文研究了小通道不同的分布方式對(duì)換熱器性能的影響。分別研究小通道的間距S為5mm、5.5mm、6mm、6.5mm、7mm時(shí)同一個(gè)截面上的溫度分布,還有其換熱系數(shù)和壓力損失,得出最佳的小通道分布方式間距為6.5mmm,在該間距下,換熱器的換熱性能最好。同時(shí)設(shè)計(jì)搭建了4mm小通道套管換熱器試驗(yàn)平臺(tái),以水為換熱介質(zhì),對(duì)換熱器內(nèi)流體流動(dòng)和換熱性能進(jìn)行研究,記錄換熱器在不同工況下?lián)Q熱量和管內(nèi)阻力損失,將結(jié)果和數(shù)值模擬結(jié)果對(duì)比,驗(yàn)證數(shù)值模擬分析的正確可信。最后將小通道套管換熱器與同軸套管換熱器進(jìn)行試驗(yàn)對(duì)比,分析對(duì)比小通道套管換熱器與同軸套管換熱器的換熱性能。驗(yàn)證了小通道套管換熱器的研究和應(yīng)用是有意義的,且為以后的深入研究提供了方向。
[Abstract]:As a kind of heat transfer equipment with excellent heat transfer performance, casing heat exchanger has been widely used in chemical, energy, refrigeration and other fields. In addition, the development and research of compact and efficient heat exchangers have become a hot spot due to the rising price of heat exchanger materials. In this paper, a 4mm small channel casing heat exchanger is proposed. The fluid flow and heat transfer characteristics in the heat exchanger are analyzed by numerical simulation and experimental study, and the distribution of the small channel is studied. The experimental results are compared with the existing coaxial casing heat exchangers. The specific research contents are as follows: taking the existing coaxial casing heat exchangers as the index and the outer pipe diameter being 20mm, The heat exchangers with a diameter of 4 mm or 5 mm in diameter were numerically simulated, and the fluid flow and heat transfer characteristics of heat exchangers with small channels were analyzed in detail according to the results of numerical simulation. The numerical simulation results show that when the diameter of the heat exchanger is reduced from 5mm to 4mmm, the heat transfer pipe increases by 3.66% of copper, and the pressure loss also increases. However, the heat transfer area of the heat exchanger is increased by 6.63 and the heat transfer coefficient and heat transfer in the heat exchanger tube are also increased, which can improve the heat transfer performance of the heat exchanger. In this paper, the influence of the different distribution of the small channel on the performance of the heat exchanger is studied after adopting the small channel of 4mm tube diameter. The temperature distribution, heat transfer coefficient and pressure loss of the same section are studied when the distance S of the small channel S is 5mm / 5.5mm / 6mm / 6mm / 7mm, and the optimum distribution mode of the small channel is 6.5mm / m. The heat exchanger has the best heat transfer performance under this distance. At the same time, the 4mm small channel casing heat exchanger test platform is designed and built. The fluid flow and heat transfer performance in the heat exchanger are studied with water as the heat exchanger medium, and the heat transfer and resistance loss in the tube are recorded under different operating conditions. The results are compared with the numerical simulation results to verify the correctness and reliability of the numerical simulation analysis. Finally, the small channel casing heat exchanger and the coaxial sleeve tube heat exchanger are tested and compared, and the heat transfer performance of the small passage casing heat exchanger and the coaxial sleeve tube heat exchanger is analyzed and compared. It is proved that the research and application of small channel casing heat exchanger is meaningful, and it provides a direction for further research.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TU83
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何錫文;;套管換熱器用于礦漿加熱[J];節(jié)能技術(shù);1992年06期
2 陳燕松;孟永彪;;套管換熱器的應(yīng)力校核[J];裝備制造技術(shù);2014年01期
3 張治川;黃磊;周波;;重疊式多套管換熱器結(jié)構(gòu)與管頭密封設(shè)計(jì)[J];壓力容器;2012年03期
4 朱倩;徐之平;劉友朋;郭鵬飛;;螺旋套管換熱器傳熱特性研究[J];能源研究與信息;2011年01期
5 劉文武;楊宗政;劉振義;;套管換熱器強(qiáng)化傳熱實(shí)驗(yàn)研究[J];煤氣與熱力;2008年06期
6 龍明主,陳世一;延長(zhǎng)單程套管換熱器壽命的工藝方法[J];化工機(jī)械;1999年02期
7 朱道義;孫紅;吳洪特;;套管換熱器的強(qiáng)化效果試驗(yàn)研究[J];長(zhǎng)江大學(xué)學(xué)報(bào)(自然科學(xué)版)理工卷;2010年03期
8 李迎建;逆流式三套管換熱器的傳熱計(jì)算[J];輕工機(jī)械;2005年03期
9 李應(yīng)欽;南立志;張軍鋒;張彥奎;;多套管換熱器內(nèi)穿法安裝施工工藝[J];安裝;2010年05期
10 劉燾;丁國(guó)良;張平;吳志剛;;套管換熱器近分相流動(dòng)態(tài)分布參數(shù)模型的改進(jìn)算法[J];上海交通大學(xué)學(xué)報(bào);2008年01期
相關(guān)會(huì)議論文 前1條
1 劉燾;張平;丁國(guó)良;;套管換熱器動(dòng)態(tài)分布參數(shù)模型的改進(jìn)算法[A];上海市制冷學(xué)會(huì)2007年學(xué)術(shù)年會(huì)論文集[C];2007年
相關(guān)博士學(xué)位論文 前1條
1 劉冬生;地源熱泵實(shí)驗(yàn)臺(tái)及同軸套管換熱器傳熱模型研究[D];吉林大學(xué);2005年
相關(guān)碩士學(xué)位論文 前2條
1 石國(guó)慶;小通道套管換熱器內(nèi)流體流動(dòng)與傳熱性能研究[D];東南大學(xué);2015年
2 付全榮;泡沫金屬填充套管換熱器內(nèi)流體流動(dòng)和傳熱研究[D];太原理工大學(xué);2010年
,本文編號(hào):1984017
本文鏈接:http://www.sikaile.net/jingjilunwen/jianzhujingjilunwen/1984017.html