無(wú)焊十字形截面屈曲約束支撐的試驗(yàn)研究
本文關(guān)鍵詞: 屈曲約束支撐 摩擦力 十字形截面 低周疲勞 滯回性能 接觸應(yīng)力 出處:《東南大學(xué)》2015年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:屈曲約束支撐(Buckling-restrained braces, BRBs)作為一種新型金屬耗能元件,具有滯回性能穩(wěn)定、耗能能力強(qiáng)、制作成本較低等優(yōu)點(diǎn),在國(guó)內(nèi)外得到了越來(lái)越多的應(yīng)用。本文針對(duì)BRB中仍然存在的一些問(wèn)題進(jìn)行了研究分析,并對(duì)屈曲約束支撐進(jìn)行了優(yōu)化設(shè)計(jì),從而達(dá)到高性能BRB的要求。本文通過(guò)三批試件的低周疲勞試驗(yàn)研究了不同構(gòu)造BRB的低周疲勞性能以及耗能能力,并對(duì)試驗(yàn)結(jié)果進(jìn)行了對(duì)比分析。本文的主要內(nèi)容如下:(1)對(duì)BRB中摩擦力的產(chǎn)生原因以及摩擦力的存在對(duì)BRB性能的影響進(jìn)行了理論分析,采用Fortran程序?qū)RB核心部件的受力過(guò)程進(jìn)行了模擬,并與試驗(yàn)結(jié)果相對(duì)比。結(jié)果表明,摩擦力的存在對(duì)BRB的性能有著重要影響。摩擦力的存在使得BRB核心部件中的應(yīng)力應(yīng)變分布不均,從而導(dǎo)致核心部件耗能分布不均,中間耗能多,兩端耗能少,最終出現(xiàn)核心部件中部的斷裂。另外摩擦力也是導(dǎo)致試件出現(xiàn)拉壓不對(duì)稱(chēng)的主要原因。(2)為了減小BRB中的摩擦力,同時(shí)達(dá)到高性能BRB的要求,設(shè)計(jì)了第一批無(wú)焊十字形截面BRB。此批次試件的核心部件采用鑄造工藝直接鑄造成十字形截面,避免了焊接十字形截面中普遍存在的焊接殘余應(yīng)力。試驗(yàn)結(jié)果表明,該類(lèi)BRB的滯回性能穩(wěn)定,拉壓不對(duì)系數(shù)滿足規(guī)范要求,試驗(yàn)結(jié)果主要的不足是低周疲勞性能不好。本批試件達(dá)不到高性能BRB的要求,主要原因是鑄造工藝達(dá)不到設(shè)計(jì)要求,導(dǎo)致試件上的缺陷較多,從而影響了低周疲勞性能。(3)鑒于第一批試件的經(jīng)驗(yàn)教訓(xùn),設(shè)計(jì)了第二批BRB試件,此批次試件的核心部件采用角鋼拼接的十字形截面。由于本批次試驗(yàn)采用熱軋角鋼拼接的方法,避免了第一批試件中不可控缺陷的產(chǎn)生。試驗(yàn)結(jié)果表明,該類(lèi)支撐的滯回性能穩(wěn)定,第一根角鋼斷裂前,試件的累積塑性變形分別達(dá)到2165、4176和1957,遠(yuǎn)大于AISC的建議值200,滿足高性能BRB的要求。此外在第一根角鋼斷裂后,剩余角鋼仍具有耗能能力。三根試件的拉壓不平衡系數(shù)均在1.1以下,滿足AISC規(guī)定的1.3限值。(4)設(shè)計(jì)了三根表面帶槽鋼襯板的BRB試件和一根普通BRB試件,并進(jìn)行了低周疲勞試驗(yàn)。試驗(yàn)結(jié)果表明,設(shè)計(jì)的四根BRB滯回性能穩(wěn)定,低周疲勞性能較好,CPD均能達(dá)到2000以上,滿足高性能BRB的要求。對(duì)于普通BRB,由于一字形截面容易產(chǎn)生多波屈曲,在波峰處的無(wú)粘結(jié)材料容易被拉裂損壞,從而導(dǎo)致試件的拉壓不平衡系數(shù)在大幅值下超過(guò)規(guī)范規(guī)定的1.3限值:而對(duì)表面帶槽鋼襯板的BRB,由于鋼與鋼之間的摩擦系數(shù)較小,即使有的波峰處的無(wú)粘結(jié)材料發(fā)生了拉裂損壞,其拉壓不平衡系數(shù)也能滿足不超過(guò)1.3的要求。(5)對(duì)BRB構(gòu)件進(jìn)行了有限元模擬,表明采用ABAQUS可以較好模擬BRB的低周反復(fù)加載過(guò)程。此外,對(duì)BRB中的接觸應(yīng)力進(jìn)行了理論分析以及有限元模擬。結(jié)果表明,BRB中的接觸應(yīng)力和核心部件的寬度沒(méi)有關(guān)系,主要與核心部件的厚度有關(guān),隨著厚度的增加,接觸區(qū)域面積增加,接觸應(yīng)力峰值顯著減小。另外,約束部件的剛度對(duì)接觸應(yīng)力也有一定的影響,但是影響程度較小。根據(jù)模擬結(jié)果,給出了BRB中接觸應(yīng)力峰值的簡(jiǎn)化估計(jì)公式,可以根據(jù)該公式近似估計(jì)BRB的接觸應(yīng)力,從而合理選擇約束砂漿或者混凝土的強(qiáng)度等級(jí)。
[Abstract]:The BRB (Buckling-restrained braces BRBs) is a new type of metal dampers, with stable hysteretic performance, energy dissipation capacity, low cost, has got more and more applications at home and abroad. This paper analysis on some problems still exist in the BRB, and the BRB were optimization design, so as to achieve the high performance requirements of BRB. The three batch of specimens of low cycle fatigue test of different structure BRB low cycle fatigue resistance and energy dissipation capacity, and the test results were compared and analyzed. The main contents of this paper are as follows: (1) effect on BRB friction causes, the existence of friction on the performance of BRB is analyzed by Fortran program loading process on BRB core components are simulated and compared with the experimental results. The results show that the friction force There has an important influence on the performance of BRB. The friction force due to the existence of BRB core components of the stress and strain distribution is uneven, resulting in uneven distribution of the core components of energy consumption, intermediate energy. Both ends of low energy consumption, ultimate fracture. In addition the central core components of friction is the main reason that lead to the tension asymmetry. (2) in order to reduce friction in BRB, and achieve the high performance requirements of BRB design, the first batch of non WELDED CRUCIFORM section BRB. of this batch of specimens of the core components of the casting process of direct casting into the shape of a cross section, avoid the weld cross section existed in the welding residual stress. The test results show that the BRB stable hysteretic performance, does not meet the standard requirements of tension and compression coefficient, the test results of main problems is the low cycle fatigue performance is not good. This batch of specimens did not reach the high performance requirements of BRB, the main raw Because the casting process can not meet the design requirements, to test more defects on, thus affecting the low cycle fatigue properties. (3) in view of the first batch of specimens of lessons, designed the second batch of BRB specimens, the core part of this batch of specimens with cruciform section. By the method to splice angle the batch test using hot rolling angle stitching, avoid the first batch of uncontrollable defects produced in the specimen. The experimental results show that this kind of support stable hysteretic performance, the first root angle before the fracture specimen cumulative plastic deformation were respectively 21654176 and 1957, higher than the recommended value of 200 AISC, to meet the high the performance of BRB. In addition in the first root fracture angle, the residual angle still has energy dissipation capacity. Three specimens tension imbalance coefficient is below 1.1, meet AISC regulations 1.3 limits. (4) design three root surface with steel lining board and a BRB specimen The ordinary BRB specimen, and the low cycle fatigue test was carried out. The results showed that four BRB lag design back to stable performance, low cycle fatigue performance, CPD could reach more than 2000, to meet the high performance requirements of BRB. For ordinary BRB, because the shape is easy to produce multi wave buckling, at the crest of the wave of no adhesive material is easy to crack damage, resulting in unbalanced coefficient in tension and compression test values significantly exceed the specification limits of 1.3 parts: on the surface of steel lined plate BRB, because the smaller friction coefficient between steel and steel, even without adhesive materials had some damage to crack at the crest, the pull pressure unbalance coefficient can also meet the requirements. No more than 1.3 (5) of the BRB component is simulated by finite element method, show that the cyclic loading process using ABAQUS can simulate BRB. In addition, the BRB of the contact stress is analyzed in theory and The finite element simulation. The results show that the BRB contact force Never mind and the core components of the main components and core width, thickness, with increasing thickness of the contact area increases, the contact stress peak decreased significantly. In addition, the restraint member stiffness on the contact stress has a certain impact, but a lesser extent. According to the simulation results, given the BRB contact should simplify the estimation formula of peak stress, according to the approximate formula for estimating the BRB contact stress, so as to choose the reasonable restraint strength grade of mortar or concrete.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TU317
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳泉;李濤;王春林;孟少平;;無(wú)黏結(jié)材料對(duì)全鋼屈曲約束支撐受力性能影響的試驗(yàn)研究[J];建筑結(jié)構(gòu)學(xué)報(bào);2013年07期
2 黃波;陳泉;李濤;王春林;吳京;;國(guó)標(biāo)Q235鋼屈曲約束支撐低周疲勞試驗(yàn)研究[J];土木工程學(xué)報(bào);2013年06期
3 王超;;人民日?qǐng)?bào)社報(bào)刊綜合業(yè)務(wù)樓屈曲約束支撐施工技術(shù)[J];施工技術(shù);2013年09期
4 蔡克銓;魏志毓;吳安杰;林保均;;脫層材料與槽接式挫屈束制支撐的性能研究[J];建筑鋼結(jié)構(gòu)進(jìn)展;2012年05期
5 孫遜;崔永平;黃明;高仲學(xué);郭洋波;蔣劍峰;;人民日?qǐng)?bào)社報(bào)刊綜合業(yè)務(wù)樓結(jié)構(gòu)設(shè)計(jì)[J];建筑結(jié)構(gòu);2012年09期
6 吳京;梁仁杰;王春林;石建華;;屈曲約束支撐核心單元的多波屈曲過(guò)程研究[J];工程力學(xué);2012年08期
7 石永久;王萌;王元清;;循環(huán)荷載作用下結(jié)構(gòu)鋼材本構(gòu)關(guān)系試驗(yàn)研究[J];建筑材料學(xué)報(bào);2012年03期
8 施剛;王飛;戴國(guó)欣;王元清;石永久;;Q460C高強(qiáng)度結(jié)構(gòu)鋼材循環(huán)加載試驗(yàn)研究[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年06期
9 李國(guó)強(qiáng);胡寶琳;孫飛飛;郭小康;;國(guó)產(chǎn)TJI型屈曲約束支撐的研制與試驗(yàn)[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年05期
10 郭彥林;王小安;江磊鑫;;裝配式防屈曲支撐構(gòu)件及框架設(shè)計(jì)理論[J];結(jié)構(gòu)工程師;2010年06期
相關(guān)博士學(xué)位論文 前2條
1 馬寧;全鋼防屈曲支撐及其鋼框架結(jié)構(gòu)抗震性能與設(shè)計(jì)方法[D];哈爾濱工業(yè)大學(xué);2010年
2 李妍;防屈曲支撐的抗震性能及子結(jié)構(gòu)試驗(yàn)方法[D];哈爾濱工業(yè)大學(xué);2007年
,本文編號(hào):1544477
本文鏈接:http://www.sikaile.net/jingjilunwen/jianzhujingjilunwen/1544477.html