基于非參數(shù)核估計模型的服裝銷售預(yù)測研究
[Abstract]:Clothing market is a typical buyer's market. In the fierce market competition, clothing belongs to short life cycle products. It has the characteristics of longer lead time, shorter sales period, lower end-of-life residual value, rapid demand change, and so on, and the clothing market has the characteristics of long lead time, shorter sales period, lower end-of-term residual value and rapid demand change. It makes it difficult for clothing suppliers to accurately predict the market demand and sales trend, and the traditional order meeting pattern in China can not respond quickly to the change of fashion trend and consumer preference. When making market forecast, many garment enterprises often lack scientific and careful planning scheme, make qualitative judgment by virtue of personal experience and subjective thought, forecast accuracy is low, blindly order and replenish make output and future sales situation not match, There may be a risk of out-of-stock. However, more clothing companies will face a backlog of inventory, increased operating costs, reduced profits and income, affecting their long-term development. The research object of this paper is a fashion leisure clothing company with a first-line brand in China. The short life cycle is more prominent in fashion clothing. Combined with the product characteristics and sales data of the clothing company, this paper solves the difficult problems in the forecast of the sales volume of the clothing company by mathematical method, and looks for a reliable forecast scheme to improve the forecast precision of fashion clothing sales. The main research achievement of this paper is to use MATLAB as a programming tool to divide the life cycle of clothing company products and to design a non-parametric kernel density estimation model to predict the product life cycle. The non-parametric kernel estimation function is used to predict the daily and total sales of clothing in each category of the company, and the accuracy of the forecast results is tested. On the basis of the effective result, the paper puts forward some suggestions on the decision-making of the company's order according to the forecast. The research in this paper can help garment companies to establish and perfect the forecasting system, and provide reference for enterprises to arrange the production replenishment plan reasonably.
【學(xué)位授予單位】:浙江工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:F274;F426.86;F224
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周志丹;回歸函數(shù)的核估計法及其在經(jīng)濟(jì)分析中的應(yīng)用[J];浙江萬里學(xué)院學(xué)報;2002年01期
2 胡明;馬鴻杰;;基于核估計的缺損生存數(shù)據(jù)分析[J];統(tǒng)計與決策;2009年02期
3 周衛(wèi)國;郭照莊;;核估計法在居民消費(fèi)模型中的應(yīng)用[J];消費(fèi)導(dǎo)刊;2010年08期
4 司繼文;黃榮兵;龔樸;;非參數(shù)VaR方法在SPAN系統(tǒng)中的應(yīng)用[J];武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版);2007年04期
5 朱宏泉,盧祖帝,汪壽陽;VALUE-AT-RISK的核估計理論[J];系統(tǒng)科學(xué)與數(shù)學(xué);2002年03期
6 邱小平,楊群;中國股市的風(fēng)險度量研究[J];統(tǒng)計與決策;2005年02期
7 徐靜;張瑛;;非參數(shù)回歸的核估計法在經(jīng)濟(jì)分析中的應(yīng)用[J];科技信息(科學(xué)教研);2008年25期
8 姚永源;楊善朝;劉靜;;基于次序統(tǒng)計量的ES核估計[J];經(jīng)濟(jì)數(shù)學(xué);2008年04期
9 夏師;;非參數(shù)核估計計算VaR在農(nóng)業(yè)板塊的實證研究[J];湖北理工學(xué)院學(xué)報(人文社會科學(xué)版);2013年01期
10 李和金,李湛,李為冰;非參數(shù)利率期限結(jié)構(gòu)模型的理論與實證研究[J];數(shù)量經(jīng)濟(jì)技術(shù)經(jīng)濟(jì)研究;2002年02期
相關(guān)會議論文 前2條
1 吳玉霞;;基于密度函數(shù)核估計的中國省域居民收入不確定性動態(tài)分析[A];第七屆河北省社會科學(xué)學(xué)術(shù)年會論文專輯[C];2012年
2 葉阿忠;;我國通貨膨脹的核估計和k-近鄰估計[A];計算機(jī)模擬與信息技術(shù)會議論文集[C];2001年
相關(guān)碩士學(xué)位論文 前10條
1 馬雷;時變擴(kuò)散方程擴(kuò)散系數(shù)的核估計[D];南京理工大學(xué);2010年
2 黃學(xué)維;密度核估計的廣義相合性[D];湖北師范學(xué)院;2010年
3 趙穎;球面變換核估計及其一致收斂速度[D];北京工業(yè)大學(xué);2001年
4 朱亞培;密度核估計的改進(jìn)及其相關(guān)問題的討論[D];蘭州交通大學(xué);2015年
5 馬珂;基于非參數(shù)核估計模型的服裝銷售預(yù)測研究[D];浙江工業(yè)大學(xué);2015年
6 孫婷;平穩(wěn)遍歷函數(shù)型數(shù)據(jù)非參數(shù)核估計的漸近分布[D];合肥工業(yè)大學(xué);2015年
7 楊秀桃;ρ-混合金融時序VaR核估計的一些性質(zhì)[D];廣西師范大學(xué);2008年
8 姚永源;基于統(tǒng)計量的ES核估計[D];廣西師范大學(xué);2008年
9 褚盈;多元概率密度函數(shù)的Beta核估計[D];浙江大學(xué);2013年
10 李永明;NA隨機(jī)變量遞歸密度核估計的漸近性質(zhì)[D];廣西師范大學(xué);2002年
,本文編號:2432254
本文鏈接:http://www.sikaile.net/jingjilunwen/hongguanjingjilunwen/2432254.html