基于特征選擇和模型融合的網(wǎng)絡(luò)購買行為預(yù)測(cè)研究
本文選題:網(wǎng)絡(luò)購買行為 切入點(diǎn):預(yù)測(cè) 出處:《北京交通大學(xué)》2017年碩士論文
【摘要】:網(wǎng)絡(luò)購物已成為人們?nèi)粘I钪斜夭豢扇钡囊徊糠。網(wǎng)絡(luò)購物中顧客和商家不需要面對(duì)面交易,這使得商家不能很好地把握消費(fèi)者的想法和需求。但是顧客的購物行為的任何一個(gè)細(xì)節(jié)卻服務(wù)器記錄著,這使得通過分析這些行為數(shù)據(jù)來了解消費(fèi)者的偏好甚至實(shí)現(xiàn)預(yù)測(cè)其購買行為成為可能。因此本文提出了使用大數(shù)據(jù)分析方法——機(jī)器學(xué)習(xí)算法從大量的消費(fèi)者歷史網(wǎng)購行為數(shù)據(jù)中學(xué)習(xí)出隱含在其中的購買模式獲得模型,當(dāng)新的顧客購物行為數(shù)據(jù)被輸入到該模型中時(shí),即可實(shí)現(xiàn)對(duì)顧客購買行為的預(yù)測(cè)。本文首先對(duì)網(wǎng)絡(luò)購買行為的影響因素和預(yù)測(cè)研究進(jìn)行了文獻(xiàn)綜述,深入了解網(wǎng)絡(luò)購買行為的本質(zhì)并發(fā)現(xiàn)目前基于大數(shù)據(jù)分析的網(wǎng)絡(luò)購買行為研究仍處于起步階段。所以本文以阿里巴巴舉辦的大數(shù)據(jù)競(jìng)賽作為研究背景,并將用戶在阿里巴巴電子商務(wù)平臺(tái)上真實(shí)的購物行為數(shù)據(jù)作為研究數(shù)據(jù),通過使用機(jī)器學(xué)習(xí)算法對(duì)網(wǎng)絡(luò)購買行為進(jìn)行建模。首先使用Sql Server在原始數(shù)據(jù)的基礎(chǔ)上構(gòu)造了 322個(gè)特征,并基于Extra-trees算法提取出對(duì)于預(yù)測(cè)購買行為最有幫助的10大特征。然后本文選擇了兩種常用的機(jī)器學(xué)習(xí)算法:邏輯斯特回歸和支持向量機(jī),將這10個(gè)特征分別輸入兩個(gè)算法得到兩個(gè)預(yù)測(cè)模型。最后本文基于Soft-voting的方法對(duì)以上兩個(gè)算法進(jìn)行融合。實(shí)驗(yàn)證明,融合后的模型較單一的模型具有更好的預(yù)測(cè)效果。本文的研究以數(shù)據(jù)為驅(qū)動(dòng),旨在實(shí)證說明使用消費(fèi)者的歷史購物行為預(yù)測(cè)其未來購買行為的可行性。本文的預(yù)測(cè)模型可以被用于購物網(wǎng)站的推薦系統(tǒng)中,實(shí)現(xiàn)用戶界面的完全個(gè)性化,激發(fā)顧客的購買欲望,提高電子商務(wù)平臺(tái)的轉(zhuǎn)化率。
[Abstract]:Online shopping has become an essential part in people's daily life. The online shopping customers and businesses do not need face-to-face transactions, the business is not very good grasp of consumer's ideas and needs. But any details of a customer's shopping behavior is a record of the server, through the analysis of these data to understand consumer behavior the prediction of their buying behavior preference even possible. Therefore this paper proposes the use of large data analysis methods, machine learning algorithms from the consumer behavior of online shopping history of a large number of data obtained in the model of implicit learning mode of purchasing them, when the customer shopping behavior data are input to the model, can realize the prediction of customer purchase behavior. Firstly, influence on online purchasing behavior factors and prediction research conducted a literature review, in-depth understanding of the network The essence of purchase behavior and found that the current analysis of large data network based on purchasing behavior research is still in its initial stage. So the Alibaba held a big data race as the research background, and the shopping user behavior data in the Alibaba real e-commerce platform as the research data, the learning algorithm to model the network purchasing behavior using the machine. The first to use Sql Server 322 features are constructed based on the original data, and Extra-trees algorithm to extract the features of 10 help for the prediction based on the purchase behavior. Then this paper chooses two kinds of machine learning algorithms: logistic regression and support vector machine, and the 10 features are input to the two algorithm two model. Finally fusion of the above two algorithms based on the Soft-voting method. The experimental results show that after fusion The prediction of the model is single model has better. This study based on data driven, empirical to illustrate the history of consumer shopping behavior to predict the feasibility of future purchase behavior. The prediction model can be used to recommend shopping site, is completely personalized user interface now, stimulate the customers desire to buy, to improve the conversion rate of e-commerce platform.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F713.55
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李美其;齊佳音;;基于購買行為及評(píng)論行為的用戶購買預(yù)測(cè)研究[J];北京郵電大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2016年04期
2 曾憲宇;劉淇;趙洪科;徐童;王怡君;陳恩紅;;用戶在線購買預(yù)測(cè):一種基于用戶操作序列和選擇模型的方法[J];計(jì)算機(jī)研究與發(fā)展;2016年08期
3 張寧;范崇睿;張巖;;一種基于RFM模型的新型協(xié)同過濾個(gè)性化推薦算法[J];電信科學(xué);2015年09期
4 張應(yīng)語;張夢(mèng)佳;王強(qiáng);任瑩;馬陽光;馬爽;邵偉;尹世久;石忠國(guó);;基于感知收益-感知風(fēng)險(xiǎn)框架的O2O模式下生鮮農(nóng)產(chǎn)品購買意愿研究[J];中國(guó)軟科學(xué);2015年06期
5 舒方;馬少輝;;客戶重復(fù)購買的組合預(yù)測(cè)方法[J];計(jì)算機(jī)與現(xiàn)代化;2015年05期
6 劉遺志;湯定娜;;感知價(jià)值對(duì)消費(fèi)者移動(dòng)購物意愿的影響研究——基于TAM和VAM理論模型[J];蘭州學(xué)刊;2015年04期
7 譚淑媛;項(xiàng)典典;何江南;;基于網(wǎng)絡(luò)外部性視角的網(wǎng)絡(luò)消費(fèi)者購買決策分析[J];電子商務(wù);2015年02期
8 張艷榮;于晶;趙志杰;;基于粗糙集理論的電子商務(wù)消費(fèi)行為預(yù)測(cè)研究[J];商業(yè)研究;2014年12期
9 葉乃沂;周蝶;;消費(fèi)者網(wǎng)絡(luò)購物感知風(fēng)險(xiǎn)概念及測(cè)量模型研究[J];管理工程學(xué)報(bào);2014年04期
10 肇丹丹;;基于SEM的消費(fèi)者網(wǎng)購再惠顧意愿度量分析[J];統(tǒng)計(jì)與決策;2014年01期
,本文編號(hào):1728719
本文鏈接:http://www.sikaile.net/jingjilunwen/guojimaoyilunwen/1728719.html