天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

幾類風險模型下第n次索賠的破產(chǎn)概率研究

發(fā)布時間:2019-05-07 16:59
【摘要】:近年來,風險理論發(fā)展十分迅速,眾多學者致力于保險公司破產(chǎn)概率的研究,涌現(xiàn)出很多新的風險模型,豐富和完善了風險理論;大部分學者對破產(chǎn)概率的研究主要集中于對破產(chǎn)時間、破產(chǎn)前瞬間盈余、破產(chǎn)時刻赤字等變量的研究,很少有學者對破產(chǎn)索賠次數(shù)與破產(chǎn)時間之間的關(guān)系進行研究;因此,將索賠次數(shù)和破產(chǎn)時間放在一起研究是一個比較新的,有意義的課題,一些關(guān)于破產(chǎn)時間的已知結(jié)果可以用破產(chǎn)時的索賠次數(shù)來解釋;研究不同風險模型下第n次索賠的破產(chǎn)概率具有一定的理論價值和現(xiàn)實指導意義,是一個非常有意義的課題。 本文首先介紹了風險理論的一些基本的知識和方法;然后為了使風險模型更符合實際情況,在經(jīng)典風險模型的基礎(chǔ)上,研究了風險事件不等同于索賠事件的Poisson-Geometric風險模型;通過構(gòu)造一類Gerber-Shiu函數(shù),分別推導出該風險模型下Gerber-Shiu函數(shù)滿足的更新方程,破產(chǎn)時刻和直到破產(chǎn)時的索賠次數(shù)的聯(lián)合密度函數(shù),最終得到了第n次索賠時的破產(chǎn)概率的數(shù)學表達式。又考慮到經(jīng)典風險模型中,保險公司只面對單風險的情形,但現(xiàn)實生活中,保險公司會承擔不同的保險業(yè)務(wù);因此,本文又研究了獨立二元風險模型和一類索賠相依的二元風險模型的破產(chǎn)問題,最終得到了這兩種風險模型下第n次索賠時的破產(chǎn)概率的數(shù)學表達式。 最后,對本文的研究結(jié)果作了一個總結(jié),給出了本文的展望。
[Abstract]:In recent years, the risk theory develops very rapidly, many scholars devote to the insurance company bankruptcy probability research, emerged many new risk models, enriched and perfected the risk theory; The majority of scholars mainly focus on the bankruptcy time, the instant surplus before bankruptcy, the deficit at the ruin time and so on. Few scholars study the relationship between the number of bankruptcy claims and the bankruptcy time, and few scholars study the relationship between the number of bankruptcy claims and the bankruptcy time. Therefore, the study of the number of claims and the time of bankruptcy together is a relatively new and meaningful subject, and some known results about the time of bankruptcy can be explained by the number of claims at the time of bankruptcy; The research on the ruin probability of the nth claim under different risk models has certain theoretical value and practical guiding significance, and it is a very meaningful subject. This paper first introduces some basic knowledge and methods of risk theory, and then, in order to make the risk model more suitable to the actual situation, on the basis of the classical risk model, studies the Poisson-Geometric risk model of risk event which is not equal to the claim event; By constructing a class of Gerber-Shiu function, the renewal equation of Gerber-Shiu function under the risk model, the joint density function of the time of ruin and the number of claims until ruin are derived, respectively. Finally, the mathematical expression of the ruin probability of the nth claim is obtained. Taking into account the classical risk model, insurance companies only face the case of single risk, but in real life, insurance companies will assume different insurance business; Therefore, the ruin problem of independent dualistic risk model and a kind of dependent dualistic risk model is studied in this paper. Finally, the mathematical expression of the ruin probability of the nth claim under these two risk models is obtained. Finally, the research results of this paper are summarized, and the prospect of this paper is given.
【學位授予單位】:安徽工程大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:F840;F224

【參考文獻】

相關(guān)期刊論文 前10條

1 王永茂;李杰;;復合Poisson-Geometric過程風險模型推廣[J];遼寧工程技術(shù)大學學報(自然科學版);2013年01期

2 張冕;高珊;;一類索賠相依二元風險模型的破產(chǎn)概率問題研究[J];經(jīng)濟數(shù)學;2008年02期

3 熊雙平;;索賠次數(shù)為復合Poisson-Geometric過程的常利率風險模型的罰金函數(shù)[J];經(jīng)濟數(shù)學;2008年02期

4 趙曉芹;王國寶;劉再明;;一類索賠到達計數(shù)過程相依的二元風險模型[J];數(shù)學的實踐與認識;2006年02期

5 成世學;破產(chǎn)論研究綜述[J];數(shù)學進展;2002年05期

6 張淑娜;陳紅燕;胡亦鈞;;一類推廣的復合Poisson-Geometric風險模型破產(chǎn)概率[J];數(shù)學雜志;2009年04期

7 ,

本文編號:2471243


資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/jingjilunwen/bxjjlw/2471243.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b3c1b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com