新課標(biāo)下小學(xué)數(shù)學(xué)運(yùn)用收斂思維的研究
[Abstract]:Since the 2011 edition of Mathematics Curriculum Standard has been popularized, there is a wave of reform upsurge in the field of primary mathematics teaching. Compared with the 2001 edition of the curriculum standard, the curriculum standard has a lot of changes, and many problems after the revision are worth our deep thinking and study. The author thinks that the essential difference between the two versions lies in their different directions of developing students' creative thinking: the curriculum standard of version 2001 lays stress on the development of students' divergent thinking, but neglects the cultivation of students' convergent thinking; The curriculum standard of version 2011 not only pays attention to the development of students' divergent thinking, but also strengthens the cultivation of students' convergent thinking. This reform is like a reform process from left to right and then to the mean, which is a milestone for teachers and students to learn mathematics well. Therefore, as a first-line teacher, how to implement the new curriculum standard and embody its main idea in the process of implementing mathematics teaching is a subject worthy of further study by scholars. Through summarizing and sorting out a large number of documents and experimenting with a large number of mathematical teaching practices, this study will study the following four contents: which knowledge is suitable for elementary school mathematics teaching, which is suitable for using convergent thinking; What kinds of convergent thinking can be used in teaching, and what are the teaching strategies of convergent thinking. The theoretical and practical results show that convergent thinking is more suitable for middle and higher grades in primary school mathematics teaching. More suitable for the use of convergent thinking knowledge points: problem solving, four principles, factor and multiple and polygon area. In the course of the continuous divergence of mathematics teaching, the points of knowledge which have been distributed and spread out should be properly centralized, and the knowledge of all aspects will be systemically sorted out, which conforms to the law of mathematics teaching. At the same time of enriching students' knowledge system, better arousing students' desire for knowledge and improving the overall level of students' cognitive knowledge. The divergent thinking advocated by 2001 edition is open, extending from one hand to the mode of changing thinking in many aspects; The convergent thinking advocated by the 2011 edition is a process of organic integration through the selection of various latitudes. Primary school mathematics teachers should properly use convergent thinking as a teaching means to make the process and result of mathematics teaching more close to the students' psychology and more in line with the students' cognitive characteristics, thus becoming an effective means to improve the teaching quality.
【學(xué)位授予單位】:杭州師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:G623.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃基廷;“細(xì)”的思維培養(yǎng)和教育[J];河池師范高等專科學(xué)校學(xué)報(bào)(自然科學(xué)版);2000年04期
2 李春梅;;呵護(hù)孩子的思維活動(dòng)[J];小學(xué)教育科研論壇;2003年02期
3 王金法;蔣明玉;;充分展現(xiàn)數(shù)學(xué)思維過程[J];小學(xué)教育科研論壇;2003年04期
4 覃永恒;;論概括的思維過程[J];語文教學(xué)通訊·D刊(學(xué)術(shù)刊);2012年04期
5 陳永壽;突出思維過程 推進(jìn)素質(zhì)教育[J];曲靖師專學(xué)報(bào);1999年S2期
6 丁江華;;突破幾何思維過程中的“惡性循環(huán)”[J];語數(shù)外學(xué)習(xí)(數(shù)學(xué)教育);2013年11期
7 解有明;;漫談培養(yǎng)學(xué)生良好的思維品質(zhì)[J];吉林教育;2014年09期
8 何衛(wèi)群;;例談初中數(shù)學(xué)課堂中師生展示思維過程教學(xué)[J];數(shù)理化學(xué)習(xí);2014年01期
9 查機(jī);;再談數(shù)學(xué)課堂中創(chuàng)新思維的培養(yǎng)[J];學(xué)園;2014年09期
10 朱亞娟;精心組織教學(xué) 培養(yǎng)創(chuàng)新思維[J];文教資料;2005年03期
相關(guān)會(huì)議論文 前10條
1 黃柯;;思維規(guī)律淺探[A];《毛澤東文藝思想研究》第四輯暨全國毛澤東文藝思想研究會(huì)1984年學(xué)術(shù)研討會(huì)論文集[C];1984年
2 鄭孟煊;;略論創(chuàng)新思維[A];邏輯研究文集——中國邏輯學(xué)會(huì)第六次代表大會(huì)暨學(xué)術(shù)討論會(huì)論文集[C];2000年
3 胡秀平;;創(chuàng)新思維的十大特征[A];北京市工商行政管理優(yōu)秀論文選編(二○○二年度)[C];2003年
4 項(xiàng)春;;地理標(biāo)準(zhǔn)化思維之研究[A];認(rèn)識(shí)地理過程 關(guān)注人類家園——中國地理學(xué)會(huì)2003年學(xué)術(shù)年會(huì)文集[C];2003年
5 顧秉鈞;;關(guān)于智力智慧應(yīng)用的幾個(gè)問題——兼談思維[A];全國第二屆智慧學(xué)學(xué)術(shù)研討會(huì)論文集(1)[C];2004年
6 許燕;丁忠英;;將思維的“火花”點(diǎn)燃[A];全國第二屆智慧學(xué)學(xué)術(shù)研討會(huì)論文集(3)[C];2004年
7 劉麗梅;孫海松;方武;;淺談?wù)Z言與思維的關(guān)系[A];現(xiàn)代企業(yè)運(yùn)行機(jī)制與思維創(chuàng)新——企業(yè)運(yùn)行機(jī)制與思維創(chuàng)新研討會(huì)議論文[C];2003年
8 崔貴維;常鐵軍;;解放思想、活躍思維,加速企業(yè)的改革與發(fā)展[A];現(xiàn)代企業(yè)運(yùn)行機(jī)制與思維創(chuàng)新——企業(yè)運(yùn)行機(jī)制與思維創(chuàng)新研討會(huì)議論文[C];2003年
9 王俊山;夏國真;;思維方式多樣化與管理[A];現(xiàn)代企業(yè)運(yùn)行機(jī)制與思維創(chuàng)新——企業(yè)運(yùn)行機(jī)制與思維創(chuàng)新研討會(huì)議論文[C];2003年
10 葉宇星;;善用數(shù)學(xué)思維 讓課堂充滿智慧——淺談在小學(xué)數(shù)學(xué)中學(xué)生創(chuàng)新意識(shí)的培養(yǎng)[A];第五屆中國智慧學(xué)學(xué)術(shù)研討會(huì)暨第三屆中國思維學(xué)學(xué)術(shù)研討會(huì)會(huì)議論文[C];2013年
相關(guān)重要報(bào)紙文章 前10條
1 付立;思維也需要模糊[N];學(xué)習(xí)時(shí)報(bào);2007年
2 方振鵬;建筑設(shè)計(jì)是一種有技巧的思維活動(dòng)[N];中華建筑報(bào);2010年
3 黃濤;簡論思維方式的創(chuàng)新[N];中國教育報(bào);2003年
4 汾西縣永安鎮(zhèn)古郡小學(xué) 郝理平;怎樣培養(yǎng)學(xué)生的創(chuàng)新思維[N];臨汾日報(bào);2005年
5 ;創(chuàng)新思維的四大特征[N];西藏日報(bào);2001年
6 張自廉;反謀略思維與識(shí)謀破謀之道[N];中國國防報(bào);2004年
7 畢節(jié)市燕子口鎮(zhèn)中心校 石龍?zhí)?淺談學(xué)生創(chuàng)新思維的培養(yǎng)[N];貴州民族報(bào);2010年
8 山西師范大學(xué)教師教育學(xué)院 李娟琴 山西師范大學(xué)政法學(xué)院 呂世辰;創(chuàng)新思維的結(jié)構(gòu)體系及培養(yǎng)探析[N];光明日報(bào);2012年
9 呂世辰 ;創(chuàng)新思維的結(jié)構(gòu)體系及培養(yǎng)探析[N];齊齊哈爾日報(bào);2012年
10 崇仁縣河上中心小學(xué) 鄧拓;低年級(jí)應(yīng)用題思維錯(cuò)誤成因及對(duì)策[N];撫州日報(bào);2010年
相關(guān)博士學(xué)位論文 前3條
1 李建升;無意識(shí)思維整體加工方式的研究[D];浙江大學(xué);2014年
2 王中杰;《內(nèi)經(jīng)》思維方式的形成、發(fā)展與當(dāng)代沖擊[D];廣州中醫(yī)藥大學(xué);2012年
3 蔡文舉;思維的秘密[D];吉林大學(xué);2014年
,本文編號(hào):2347202
本文鏈接:http://www.sikaile.net/jiaoyulunwen/xiaoxuejiaoyu/2347202.html