天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 教育論文 > 高等教育論文 >

基于支持向量機(jī)的高校課堂教學(xué)質(zhì)量評價研究

發(fā)布時間:2018-11-25 16:55
【摘要】:高校課堂教學(xué)目前是各大高校教學(xué)的主要形式,它是高校教學(xué)的基礎(chǔ)并且在教學(xué)過程中具有非常重要的作用。而課堂教學(xué)質(zhì)量評價體系的建立和實施不僅對高校的教學(xué)發(fā)展理論有很大的幫助作用,更能保障高校課堂教學(xué)質(zhì)量評價的順利進(jìn)行以及課堂教學(xué)活動發(fā)揮有效的作用。目前,傳統(tǒng)的教學(xué)質(zhì)量評價方式在只有學(xué)生參與的情況下,雖然已經(jīng)取得了一定的成果,但是還有一些問題沒有很好的解決,比如學(xué)生的主觀因素對教師存在一定的偏見,使得評價結(jié)果出現(xiàn)誤差,或者只注重評價結(jié)果而不能體現(xiàn)教師教學(xué)的過程,也會導(dǎo)致評價結(jié)果出現(xiàn)誤差等等。而支持向量機(jī)(Support Vector Machines,簡稱SVMs)被引入教學(xué)質(zhì)量評價之后,學(xué)生、同行和領(lǐng)導(dǎo)都參與評價,不僅能夠避免人為因素對結(jié)果造成的誤差還能充分體現(xiàn)教師的教學(xué)過程。另外教學(xué)質(zhì)量評價是一種多類分類問題,最終選擇支持向量機(jī)多類分類算法對本文的課堂教學(xué)質(zhì)量評價結(jié)果進(jìn)行預(yù)測。概括起來,本文的主要工作如下:(1)分析和總結(jié)了課堂教學(xué)質(zhì)量評價的意義和傳統(tǒng)的評價方法存在的缺陷。根據(jù)具體的需求和評價指標(biāo)體系的構(gòu)建原則,制定了課堂教學(xué)質(zhì)量的評價指標(biāo)體系。由于各指標(biāo)之間存在非線性關(guān)系,因此,決定將支持向量機(jī)算法應(yīng)用于課堂教學(xué)質(zhì)量評價中,用來解決教學(xué)質(zhì)量評價中可能遇到的問題。(2)介紹了目前常用的幾種支持向量機(jī)多類分類算法,重點研究了二叉樹支持向量機(jī)多類分類算法,并且針對已經(jīng)存在算法生成的是偏二叉樹的缺陷,提出了一種新的改進(jìn)思想。改進(jìn)算法利用完全二叉樹的生成策略以及聚類中的類距離的相關(guān)定義,使得生成的二叉樹結(jié)構(gòu)達(dá)到完全或者近似完全的狀態(tài),從而提高分類精度和效率。最后通過在UCI數(shù)據(jù)集上做仿真實驗,驗證了改進(jìn)算法的有效性。(3)利用改進(jìn)的二叉樹支持向量機(jī)多類分類算法,構(gòu)建基于二叉樹支持向量機(jī)的高校課堂教學(xué)質(zhì)量評價模型,針對山東省某高校的教學(xué)質(zhì)量進(jìn)行評價,填寫評價量表,并且統(tǒng)計、收集多組數(shù)據(jù)。在MATLAB環(huán)境下,對收集到的數(shù)據(jù)集進(jìn)行實驗,并分析其結(jié)果。將改進(jìn)算法的預(yù)測精度和效率與支持向量機(jī)算法、二叉樹支持向量機(jī)算法相比較,改進(jìn)算法優(yōu)勢明顯,能夠更好的預(yù)測未標(biāo)記樣本。
[Abstract]:At present, classroom teaching in colleges and universities is the main form of teaching in colleges and universities. It is the foundation of teaching in colleges and universities and plays a very important role in the teaching process. The establishment and implementation of the evaluation system of classroom teaching quality can not only help the theory of teaching development in colleges and universities, but also ensure the smooth progress of evaluation of classroom teaching quality and the effective role of classroom teaching activities. At present, although the traditional teaching quality evaluation method has only the participation of students, although it has achieved certain results, there are still some problems that have not been solved very well. For example, the subjective factors of students have certain prejudice against teachers. It makes the evaluation result error, or only pays attention to the evaluation result but not the teacher teaching process, also will cause the evaluation result to appear the error and so on. After the introduction of support vector machine (SVMs) to the evaluation of teaching quality, students, peers and leaders all participate in the evaluation, which can not only avoid the errors caused by human factors, but also fully reflect the teaching process of teachers. In addition, the evaluation of teaching quality is a kind of multi-class classification problem. Finally, support vector machine multi-class classification algorithm is chosen to predict the evaluation results of classroom teaching quality in this paper. To sum up, the main work of this paper is as follows: (1) the significance of classroom teaching quality evaluation and the shortcomings of traditional evaluation methods are analyzed and summarized. The evaluation index system of classroom teaching quality is established according to the concrete needs and the construction principle of evaluation index system. Because of the nonlinear relationship among the indicators, it is decided to apply the support vector machine (SVM) algorithm to the evaluation of classroom teaching quality. It is used to solve the problems that may be encountered in the evaluation of teaching quality. (2) several commonly used SVM classification algorithms are introduced, and the binary tree support vector machine multi-class classification algorithm is studied emphatically. In order to solve the problem of partial binary tree generation, a new improved idea is proposed. The improved algorithm makes use of the generation strategy of complete binary tree and the relative definition of class distance in clustering to make the structure of the generated binary tree complete or nearly complete so as to improve the classification accuracy and efficiency. Finally, the effectiveness of the improved algorithm is verified by the simulation experiment on the UCI dataset. (3) using the improved binary tree support vector machine multi-class classification algorithm, the evaluation model of college classroom teaching quality based on binary tree support vector machine is constructed. This paper evaluates the teaching quality of a university in Shandong province, fills out the evaluation scale, and collects many groups of data. In MATLAB environment, the collected data sets are tested and the results are analyzed. Comparing the prediction accuracy and efficiency of the improved algorithm with the support vector machine algorithm and binary tree support vector machine algorithm, the improved algorithm has obvious advantages and can better predict unlabeled samples.
【學(xué)位授予單位】:重慶師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:G642.4

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王云英;閻滿富;;C-支持向量機(jī)及其改進(jìn)[J];唐山師范學(xué)院學(xué)報;2012年05期

2 謝飛;;支持向量機(jī)及其應(yīng)用研究[J];安徽教育學(xué)院學(xué)報;2007年03期

3 方輝;艾青;;支持向量機(jī)訓(xùn)練及分類算法研究[J];大慶師范學(xué)院學(xué)報;2009年03期

4 胡運紅;;支持向量機(jī)的研究與應(yīng)用[J];運城學(xué)院學(xué)報;2012年02期

5 吳疆;董婷;;基于支持向量機(jī)算法的癌癥預(yù)測[J];榆林學(xué)院學(xué)報;2007年04期

6 燕孝飛;王艷秋;;支持向量機(jī)及其在羽絨識別中的應(yīng)用研究[J];棗莊學(xué)院學(xué)報;2007年05期

7 王達(dá);張坤;;基于支持向量機(jī)和轉(zhuǎn)換的錯誤驅(qū)動學(xué)習(xí)方法的組塊識別[J];南陽師范學(xué)院學(xué)報;2009年06期

8 胡運紅;段惠琴;;多分類支持向量機(jī)的算法研究[J];運城學(xué)院學(xué)報;2010年02期

9 周宓;;基于支持向量機(jī)的信用卡信譽(yù)檢測[J];新鄉(xiāng)學(xué)院學(xué)報(自然科學(xué)版);2012年06期

10 余萍;;基于邊界調(diào)節(jié)的支持向量機(jī)模型[J];新課程(教育學(xué)術(shù)版);2008年02期

相關(guān)會議論文 前10條

1 余樂安;姚瀟;;基于中心化支持向量機(jī)的信用風(fēng)險評估模型[A];第六屆(2011)中國管理學(xué)年會——商務(wù)智能分會場論文集[C];2011年

2 劉希玉;徐志敏;段會川;;基于支持向量機(jī)的創(chuàng)新分類器[A];山東省計算機(jī)學(xué)會2005年信息技術(shù)與信息化研討會論文集(一)[C];2005年

3 史曉濤;劉建麗;駱玉榮;;一種抗噪音的支持向量機(jī)學(xué)習(xí)方法[A];全國第19屆計算機(jī)技術(shù)與應(yīng)用(CACIS)學(xué)術(shù)會議論文集(下冊)[C];2008年

4 何琴淑;劉信恩;肖世富;;基于支持向量機(jī)的系統(tǒng)辨識方法研究及應(yīng)用[A];中國力學(xué)大會——2013論文摘要集[C];2013年

5 劉駿;;基于支持向量機(jī)方法的衢州降雪模型[A];第五屆長三角氣象科技論壇論文集[C];2008年

6 王婷;胡秀珍;;基于組合向量的支持向量機(jī)方法預(yù)測膜蛋白類型[A];第十一次中國生物物理學(xué)術(shù)大會暨第九屆全國會員代表大會摘要集[C];2009年

7 趙晶;高雋;張旭東;謝昭;;支持向量機(jī)綜述[A];全國第十五屆計算機(jī)科學(xué)與技術(shù)應(yīng)用學(xué)術(shù)會議論文集[C];2003年

8 周星宇;王思元;;智能數(shù)學(xué)與支持向量機(jī)[A];2005年中國智能自動化會議論文集[C];2005年

9 顏根廷;馬廣富;朱良寬;宋斌;;一種魯棒支持向量機(jī)算法[A];2006中國控制與決策學(xué)術(shù)年會論文集[C];2006年

10 侯澍e,

本文編號:2356815


資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/jiaoyulunwen/gaodengjiaoyulunwen/2356815.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ac7c5***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com