基于支持向量機(jī)的高校課堂教學(xué)質(zhì)量評價研究
[Abstract]:At present, classroom teaching in colleges and universities is the main form of teaching in colleges and universities. It is the foundation of teaching in colleges and universities and plays a very important role in the teaching process. The establishment and implementation of the evaluation system of classroom teaching quality can not only help the theory of teaching development in colleges and universities, but also ensure the smooth progress of evaluation of classroom teaching quality and the effective role of classroom teaching activities. At present, although the traditional teaching quality evaluation method has only the participation of students, although it has achieved certain results, there are still some problems that have not been solved very well. For example, the subjective factors of students have certain prejudice against teachers. It makes the evaluation result error, or only pays attention to the evaluation result but not the teacher teaching process, also will cause the evaluation result to appear the error and so on. After the introduction of support vector machine (SVMs) to the evaluation of teaching quality, students, peers and leaders all participate in the evaluation, which can not only avoid the errors caused by human factors, but also fully reflect the teaching process of teachers. In addition, the evaluation of teaching quality is a kind of multi-class classification problem. Finally, support vector machine multi-class classification algorithm is chosen to predict the evaluation results of classroom teaching quality in this paper. To sum up, the main work of this paper is as follows: (1) the significance of classroom teaching quality evaluation and the shortcomings of traditional evaluation methods are analyzed and summarized. The evaluation index system of classroom teaching quality is established according to the concrete needs and the construction principle of evaluation index system. Because of the nonlinear relationship among the indicators, it is decided to apply the support vector machine (SVM) algorithm to the evaluation of classroom teaching quality. It is used to solve the problems that may be encountered in the evaluation of teaching quality. (2) several commonly used SVM classification algorithms are introduced, and the binary tree support vector machine multi-class classification algorithm is studied emphatically. In order to solve the problem of partial binary tree generation, a new improved idea is proposed. The improved algorithm makes use of the generation strategy of complete binary tree and the relative definition of class distance in clustering to make the structure of the generated binary tree complete or nearly complete so as to improve the classification accuracy and efficiency. Finally, the effectiveness of the improved algorithm is verified by the simulation experiment on the UCI dataset. (3) using the improved binary tree support vector machine multi-class classification algorithm, the evaluation model of college classroom teaching quality based on binary tree support vector machine is constructed. This paper evaluates the teaching quality of a university in Shandong province, fills out the evaluation scale, and collects many groups of data. In MATLAB environment, the collected data sets are tested and the results are analyzed. Comparing the prediction accuracy and efficiency of the improved algorithm with the support vector machine algorithm and binary tree support vector machine algorithm, the improved algorithm has obvious advantages and can better predict unlabeled samples.
【學(xué)位授予單位】:重慶師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:G642.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王云英;閻滿富;;C-支持向量機(jī)及其改進(jìn)[J];唐山師范學(xué)院學(xué)報;2012年05期
2 謝飛;;支持向量機(jī)及其應(yīng)用研究[J];安徽教育學(xué)院學(xué)報;2007年03期
3 方輝;艾青;;支持向量機(jī)訓(xùn)練及分類算法研究[J];大慶師范學(xué)院學(xué)報;2009年03期
4 胡運紅;;支持向量機(jī)的研究與應(yīng)用[J];運城學(xué)院學(xué)報;2012年02期
5 吳疆;董婷;;基于支持向量機(jī)算法的癌癥預(yù)測[J];榆林學(xué)院學(xué)報;2007年04期
6 燕孝飛;王艷秋;;支持向量機(jī)及其在羽絨識別中的應(yīng)用研究[J];棗莊學(xué)院學(xué)報;2007年05期
7 王達(dá);張坤;;基于支持向量機(jī)和轉(zhuǎn)換的錯誤驅(qū)動學(xué)習(xí)方法的組塊識別[J];南陽師范學(xué)院學(xué)報;2009年06期
8 胡運紅;段惠琴;;多分類支持向量機(jī)的算法研究[J];運城學(xué)院學(xué)報;2010年02期
9 周宓;;基于支持向量機(jī)的信用卡信譽(yù)檢測[J];新鄉(xiāng)學(xué)院學(xué)報(自然科學(xué)版);2012年06期
10 余萍;;基于邊界調(diào)節(jié)的支持向量機(jī)模型[J];新課程(教育學(xué)術(shù)版);2008年02期
相關(guān)會議論文 前10條
1 余樂安;姚瀟;;基于中心化支持向量機(jī)的信用風(fēng)險評估模型[A];第六屆(2011)中國管理學(xué)年會——商務(wù)智能分會場論文集[C];2011年
2 劉希玉;徐志敏;段會川;;基于支持向量機(jī)的創(chuàng)新分類器[A];山東省計算機(jī)學(xué)會2005年信息技術(shù)與信息化研討會論文集(一)[C];2005年
3 史曉濤;劉建麗;駱玉榮;;一種抗噪音的支持向量機(jī)學(xué)習(xí)方法[A];全國第19屆計算機(jī)技術(shù)與應(yīng)用(CACIS)學(xué)術(shù)會議論文集(下冊)[C];2008年
4 何琴淑;劉信恩;肖世富;;基于支持向量機(jī)的系統(tǒng)辨識方法研究及應(yīng)用[A];中國力學(xué)大會——2013論文摘要集[C];2013年
5 劉駿;;基于支持向量機(jī)方法的衢州降雪模型[A];第五屆長三角氣象科技論壇論文集[C];2008年
6 王婷;胡秀珍;;基于組合向量的支持向量機(jī)方法預(yù)測膜蛋白類型[A];第十一次中國生物物理學(xué)術(shù)大會暨第九屆全國會員代表大會摘要集[C];2009年
7 趙晶;高雋;張旭東;謝昭;;支持向量機(jī)綜述[A];全國第十五屆計算機(jī)科學(xué)與技術(shù)應(yīng)用學(xué)術(shù)會議論文集[C];2003年
8 周星宇;王思元;;智能數(shù)學(xué)與支持向量機(jī)[A];2005年中國智能自動化會議論文集[C];2005年
9 顏根廷;馬廣富;朱良寬;宋斌;;一種魯棒支持向量機(jī)算法[A];2006中國控制與決策學(xué)術(shù)年會論文集[C];2006年
10 侯澍e,
本文編號:2356815
本文鏈接:http://www.sikaile.net/jiaoyulunwen/gaodengjiaoyulunwen/2356815.html