天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 教育論文 > 初中教育論文 >

高中數(shù)學問題提出的課堂教學研究

發(fā)布時間:2018-09-04 19:24
【摘要】:創(chuàng)新意識的培養(yǎng)是現(xiàn)代數(shù)學教育的基本任務,應體現(xiàn)在數(shù)學教與學的過程之中。學生發(fā)現(xiàn)問題和提出問題是創(chuàng)新的基礎。問題是數(shù)學發(fā)展的源泉,也是數(shù)學創(chuàng)新的基礎,數(shù)學問題可以把思考引向深處,問題可以發(fā)現(xiàn)新的思路。我國研究者對問題和問題提出內涵解讀以及在數(shù)學課堂教學中得到特別的重視,大部分都集中在思辨論證階段,而對深入學校扎扎實實地了解、考察實際實施狀況的研究相對忽視。國外對數(shù)學問題提出的課堂教學的研究比較豐富,而我國涉及數(shù)學問題在課堂教學中的實證研究文章也較少。為此,本研究做了以下一些工作及其得出的結論:第一、通過文獻研究,提出高中數(shù)學問題提出課堂教學的研究背景以及問題、數(shù)學問題、問題提出的核心概念。第二、根據(jù)中學數(shù)學課堂中問題提出的學生活動的強弱關系,構建了數(shù)學問題提出的課堂教學的五級水平體系。根據(jù)課堂教學中問題提出的五級水平體系,通過問卷和訪談的形式,調查了高中數(shù)學課堂教學中問題提出的師生活動究竟如何?問題提出主要是那種水平較好?是實現(xiàn)學生自主學習、合作探究、發(fā)現(xiàn)問題和提出問題的教育理念,還是沿襲教師講學生聽的教學方式?第三、通過訪談、問卷調查、隨機聽課、測試及教師個案分析等方法,比較了不同的課堂教學中數(shù)學問題提出的差異,對不同程度的學生進行了數(shù)學問題提出的認識、態(tài)度和影響因素等進行對比分析;對不同學校的教師進行了數(shù)學問題提出的認識、學習情況、課堂教學指導情況和一些外界因素的影響進行橫向對比。其研究的結果是:教師和學生都傾向于師生探究式的問題提出教學方式;成績差異較大的學生對數(shù)學問題提出沒有太大的差別;教師在引導學生提出問題過程中起著關鍵作用。優(yōu)秀的學生更希望得到教師的直接講解;中等學生和差等生希望更多地獲得教師的鼓勵和支持;不同學校的教師都對數(shù)學問題提出的課堂教學持“觀望”的態(tài)度,希望獲得更多的指導;許多學生對“問題”把握不準,認為提出問題也許不太“合適”;問題提出的外界因素的影響也是阻礙學生問題提出的最大“瓶頸”。第四、在問題提出的課堂教學的個案研究中,培養(yǎng)學生良好的問題意識還是在問題解決中和問題解決后進行,學生能進行“模仿”提出一些數(shù)學問題;教師在教學時也使用“問題”驅動教學,利用“問題串”完成教學任務,提出“問題串”的“串聯(lián)模式”、“并聯(lián)模式”和“混聯(lián)模式”,為學生認識并提出問題搭建良好平臺。第五、在問題提出的“教”與“學”中,學生要能提出問題,離不開教師“元認知指導語”的引導,對學生進行“元認知訓練”有效地促進學生在課堂教學中提出問題。從三大因素九個方面對數(shù)學問題提出前、數(shù)學問題提出中和數(shù)學問題提出后進行了元認知理論的刻畫。得出的結論是:優(yōu)秀學生的數(shù)學問題出的元認知總體上比中等生(差等生)的要好,優(yōu)秀學生在個體知識、任務知識、計劃和調控等元認知因素中比中等生在這些方面出現(xiàn)的可能性較大。中等生和差等生在策略、反思和調控方面不如優(yōu)等生強,中等生和差等生在提出問題和表述問題時表現(xiàn)出不太自信的特點。經(jīng)過訓練在學生的問題提出的元認知體驗方面,中等生和優(yōu)等生沒有太大的差別。中等生在問題提出的態(tài)度上容易獲得成功的體驗,優(yōu)等生除了提出問題之外,還要考慮其它別的因素人,如怎樣解決、是否合理等,中等生在這方面考慮欠佳。
[Abstract]:The cultivation of innovative consciousness is the basic task of modern mathematics education, which should be embodied in the process of mathematics teaching and learning. Students discover problems and propose problems as the basis of innovation. Problems are the source of mathematical development and the basis of mathematical innovation. Mathematical problems can lead their thinking to the depths, and problems can find new ideas. Most of them concentrate on the stage of speculation and argumentation, but neglect the study of thoroughly understanding the school and investigating the actual implementation. Therefore, this study has done the following work and its conclusions: first, through literature research, put forward the research background and problems of high school mathematics classroom teaching, mathematical problems, the core concepts of the problem. second, according to the middle school mathematics classroom problems. This paper puts forward the relationship between the strength and weakness of students'activities, and constructs a five-level system of classroom teaching for mathematical problems. According to the five-level system of classroom teaching problems, through questionnaires and interviews, the author investigates what kind of teacher-life activities are put forward in high school mathematics classroom teaching. The main problem is what kind of level is better. Is it the educational idea of realizing students'autonomous learning, cooperative inquiry, finding problems and raising questions, or is it the teaching method that teachers teach students to listen to? Thirdly, through interviews, questionnaires, random lectures, tests and teacher case analysis, this paper compares the differences of mathematical problems in different classroom teaching, and makes a comparison between students of different degrees. This paper makes a contrastive analysis of the understanding, attitude and influencing factors of mathematical problems, and makes a horizontal comparison of the understanding, learning, classroom instruction and some external factors of teachers in different schools. The excellent students want to be explained directly by the teachers; the middle and poor students want more encouragement and support from the teachers; teachers in different schools all want more encouragement and support from the teachers. Many students hold a "wait-and-see" attitude toward the classroom teaching of mathematical problems, hoping to get more guidance; many students are not sure about the "problems" and think it may not be "appropriate" to ask questions; the influence of the external factors of the problems is also the biggest "bottleneck" to hinder students'problems. Fourthly, classroom teaching of problem-solving is proposed. In the case study, the cultivation of students'good problem consciousness is still carried out in the process of problem solving and after problem solving, students can "imitate" to raise some mathematical problems; teachers also use "problem" to drive teaching, use "problem series" to complete teaching tasks, and put forward "series" and "parallel" of "problem series". Fifthly, in the "teaching" and "learning" put forward in the question, students can ask questions without the guidance of the teacher's "meta-cognitive guidance", and the "meta-cognitive training" can effectively promote students to ask questions in classroom teaching. The conclusion is that the excellent students'metacognition of mathematical problems is generally better than the middle students' (poor students'), and the excellent students'metacognition of individual knowledge, task knowledge, planning and regulation is better than the middle students' (poor students'). Medium students and poor students are not as good as top students in strategy, reflection and regulation, and middle students and poor students are not very confident in asking and expressing questions. There are too many differences. The middle school students are easy to get a successful experience in problem-solving attitude. Besides asking questions, the top students should also consider other factors, such as how to solve the problem, whether it is reasonable or not. The middle school students are not good at this aspect.
【學位授予單位】:貴州師范大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:G633.6

【參考文獻】

相關期刊論文 前10條

1 李吉寶;論學生數(shù)學素質培養(yǎng)的有關問題[J];安徽教育學院學報;2003年03期

2 竇盼英;;從線性規(guī)劃課例談探究型教學模式的設計[J];安陽師范學院學報;2007年02期

3 夏小剛;呂傳漢;;美國數(shù)學教育中的提出問題研究綜述[J];比較教育研究;2006年02期

4 黃勇;“問題解決”與中學數(shù)學課程教學[J];福建教育學院學報;2003年04期

5 陳顯強;問題解決與數(shù)學教學改革[J];廣東廣播電視大學學報;2001年02期

6 楊彥金;談情境創(chuàng)設在思想政治課中的應用[J];廣西教育學院學報;2005年S1期

7 張維忠;;跨文化數(shù)學教育研究綜述[J];當代教育與文化;2011年03期

8 章建躍;;沒有“過程”=沒有“思想”[J];中小學數(shù)學(高中版);2008年09期

9 蔣曉武;;培養(yǎng)學生“提問能力”的認識與實踐[J];職業(yè)教育研究;2006年02期

10 劉元宗;數(shù)學問題解決及其教學[J];課程.教材.教法;2004年02期

相關碩士學位論文 前1條

1 張偉民;教學網(wǎng)站的輔助教學研究[D];西北師范大學;2007年

,

本文編號:2223115

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/jiaoyulunwen/chuzhongjiaoyu/2223115.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶9118b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com