天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 建筑工程論文 >

筒壁卸料動(dòng)態(tài)側(cè)壓力試驗(yàn)研究

發(fā)布時(shí)間:2018-09-10 19:35
【摘要】:筒倉的動(dòng)態(tài)壓力大于靜態(tài)壓力已是不爭(zhēng)的事實(shí),但引起動(dòng)態(tài)壓力增大的原因復(fù)雜,長期以來一直處于探索階段。到目前為止,尚沒有成熟的設(shè)計(jì)理論。尤其是筒壁卸料理論更加匱乏。因此,研究筒壁卸料過程中物料流動(dòng)對(duì)倉壁側(cè)壓力具有重要的理論意義和實(shí)用價(jià)值。論文依托國家自然科學(xué)基金項(xiàng)目:《基于裝卸料過程能量轉(zhuǎn)換的筒倉動(dòng)態(tài)超壓機(jī)理研究》(項(xiàng)目編號(hào):51578216)。本文主要內(nèi)容有:(1)結(jié)合工程實(shí)例,制作筒倉模型,對(duì)土壓力傳感器進(jìn)行標(biāo)定,布置在設(shè)定位置的筒倉內(nèi)壁上。(2)采用單側(cè)和雙側(cè)兩種卸料方式對(duì)高徑比不同(1.1和2.2)的筒倉進(jìn)行靜態(tài)壓力和動(dòng)態(tài)壓力測(cè)試。使用土壓力傳感器,測(cè)試最大貯料高度各測(cè)點(diǎn)靜態(tài)壓力值,并與理論值對(duì)比分析;測(cè)試卸料過程中的動(dòng)態(tài)側(cè)壓力;根據(jù)試驗(yàn)結(jié)果計(jì)算超壓系數(shù),分析最大超壓系數(shù)發(fā)生位置。(3)結(jié)果表明,筒壁單側(cè)卸料過程中,淺倉最大超壓系數(shù)發(fā)生位置在0.2m深度處,值為1.57;深倉最大超壓系數(shù)發(fā)生位置在0.4m深度處,值為1.74。筒壁雙側(cè)卸料過程中,淺倉最大超壓系數(shù)在0.2m處,值為1.51;深倉最大超壓系數(shù)在0.4m深度處,值為1.58。由此可知,淺倉最大超壓系數(shù)比深倉小,單側(cè)卸料的超壓系數(shù)比雙側(cè)卸料大。(4)對(duì)倉內(nèi)物料流態(tài)進(jìn)行研究,并利用PFC3D顆粒流程序建立與試驗(yàn)使用的深倉筒壁雙側(cè)卸料筒倉相同的模型,將模擬流態(tài)與拍攝所得的流態(tài)對(duì)比分析。結(jié)果表明,模擬流態(tài)與試驗(yàn)拍攝所得流態(tài)基本吻合。其中高徑比為1.1的筒倉,卸料過程中發(fā)生管狀流動(dòng),倉內(nèi)存在明顯的靜止和流動(dòng)區(qū)域,且流動(dòng)區(qū)域與靜止區(qū)域截面不和倉壁相交;高徑比為2.2的筒倉,卸料過程中發(fā)生混合流動(dòng),區(qū)域主要分布在0.3m-0.5m左右深度處,進(jìn)而導(dǎo)致筒倉上部為整體流動(dòng),下部為管狀流動(dòng)。
[Abstract]:It is an indisputable fact that the dynamic pressure of silo is greater than the static pressure, but the reasons for the increase of the dynamic pressure are complicated and have been in the stage of exploration for a long time. So far, there is no mature design theory. Especially the theory of cylinder wall discharge is more scarce. Therefore, it is of great theoretical significance and practical value to study the material flow in the discharge process of cylinder wall. This paper relies on the National Natural Science Foundation of China: research on dynamic overpressure Mechanism of Silo based on Energy conversion in loading and unloading process (item No.: 51578216). The main contents of this paper are as follows: (1) combined with engineering examples, the silo model is made and the earth pressure sensor is calibrated. (2) the static pressure and dynamic pressure of silo with different ratio of height to diameter (1.1 and 2.2) were measured by two discharge methods: one side and two sides. Using the earth pressure sensor, the static pressure values at each measuring point of the maximum storage height are measured and compared with the theoretical values; the dynamic lateral pressure during discharge is tested; the overpressure coefficient is calculated according to the test results. The results show that the maximum overpressure coefficient of shallow silo occurs at the depth of 0.2m with a value of 1.57, and the maximum overpressure coefficient of deep warehouse occurs at the depth of 0.4 m, with a value of 1.74. The maximum overpressure coefficient of shallow silo is 0.2m and the maximum overpressure coefficient of deep silo is 1.58m in the depth of 0.4m. It can be seen that the maximum overpressure coefficient of shallow silo is smaller than that of deep bin, and the overpressure coefficient of discharging material on one side is larger than that of both sides. (4) the material flow pattern in warehouse is studied. Using PFC3D particle flow program to establish the same model as the double-side unloading silo used in the experiment, and to compare the simulated flow state with the flow state obtained by shooting. The results show that the simulated flow pattern is in good agreement with the experimental one. In silo with aspect ratio 1.1, tubular flow occurs during discharge, and there are obvious static and flowing areas in the silo, and the flow area does not intersect with the wall of the silo in the static area, while the silo with a ratio of height to diameter of 2.2. The mixed flow occurs in the unloading process, and the region is mainly distributed at the depth of the 0.3m-0.5m, which leads to the overall flow in the upper part of the silo and the tubular flow in the lower part of the silo.
【學(xué)位授予單位】:河南工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU375

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 陳宏斌;魏克嫻;王永巍;;我國糧食儲(chǔ)備庫新倉型的現(xiàn)狀及發(fā)展[J];農(nóng)業(yè)機(jī)械;2013年17期

2 趙松;汪里杰;;靜載和卸料下筒倉壁側(cè)壓力分析[J];科協(xié)論壇(下半月);2011年04期

3 程緒鐸;;筒倉中糧食卸載動(dòng)壓力的研究與進(jìn)展[J];糧食儲(chǔ)藏;2008年05期

4 陳長冰;梁醒培;;運(yùn)行工況對(duì)筒倉動(dòng)態(tài)側(cè)壓力的影響[J];山西建筑;2008年26期

5 田宏圖;;朗肯與庫侖土壓力理論的分析比較[J];鄭鐵科技通訊;2008年02期

6 俞曉紅;;兩個(gè)筒倉倒塌案例及其原因分析[J];水運(yùn)科學(xué)研究;2006年03期

7 李興高,劉維寧,張彌;關(guān)于庫侖土壓力理論的探討[J];巖土工程學(xué)報(bào);2005年06期

8 原方,邵興,王錄民,崔元瑞;一種新的淺圓倉散料側(cè)壓力計(jì)算方法[J];工程力學(xué);2004年03期

9 原方,范量,邵興;大直徑淺圓倉貯料側(cè)壓力計(jì)算公式探討[J];隧道建設(shè);2004年01期

10 寧慧民;筒倉倉壁的動(dòng)態(tài)壓力初探[J];山西建筑;2004年01期

相關(guān)博士學(xué)位論文 前1條

1 陳長冰;筒倉內(nèi)散體側(cè)壓力沿倉壁分布研究[D];合肥工業(yè)大學(xué);2006年

相關(guān)碩士學(xué)位論文 前3條

1 宋靖;大型高溫貯料筒倉受力性能分析[D];浙江大學(xué);2014年

2 董承英;帶流槽側(cè)壁卸料筒倉動(dòng)態(tài)壓力及其流態(tài)試驗(yàn)研究[D];河南工業(yè)大學(xué);2013年

3 段留省;大直徑淺圓鋼筒倉卸料動(dòng)態(tài)作用研究[D];西安建筑科技大學(xué);2011年

,

本文編號(hào):2235410

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/jianzhugongchenglunwen/2235410.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶bbc9a***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com