高性能混凝土高溫?zé)嶙冃卧囼?yàn)及熱應(yīng)力模擬研究
本文關(guān)鍵詞: 高性能混凝土 高溫 聚丙烯纖維 熱應(yīng)變 ABAQUS模擬 出處:《太原理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:高性能混凝土因其具備良好的綜合性能已被普遍應(yīng)用于各項(xiàng)土木工程中。然而,高性能混凝土因其高密實(shí)性低滲透性,當(dāng)其遭受火災(zāi)高溫時(shí),由于內(nèi)部產(chǎn)生的蒸汽壓、熱變形及溫度應(yīng)力等多因素綜合作用,易導(dǎo)致混凝土發(fā)生爆裂、脫落、承載力降低甚至坍塌,建筑物的安全性及人們生命財(cái)產(chǎn)將受到威脅,因此研究高性能混凝土高溫性能,揭示其內(nèi)部應(yīng)力及宏觀承載力隨溫度變化的損傷規(guī)律,具有重要的理論意義和工程價(jià)值。依托國家自然基金(51478290),以C60高性能混凝土為對(duì)象,研究高溫對(duì)其力學(xué)性能的影響;借助熱電偶和正弦應(yīng)變計(jì)研究高溫與混凝土板內(nèi)部的溫度場(chǎng)及熱應(yīng)變的關(guān)系;借助ABAQUS軟件對(duì)高性能混凝土板高溫下內(nèi)部熱應(yīng)力和裂縫的發(fā)展以及構(gòu)件的變形進(jìn)行探索性模擬研究,主要內(nèi)容如下。一、高性能混凝土宏觀力學(xué)試驗(yàn),研究不摻與摻0.2%聚丙烯纖維的高性能混凝土高溫后的劈裂抗拉強(qiáng)度,軸心抗壓強(qiáng)度及彈性模量,試驗(yàn)結(jié)果表明各項(xiàng)力學(xué)性能指標(biāo)總體隨溫度升高而降低,但摻纖維混凝土的劣化程度要明顯比素混凝土低,并依托試驗(yàn)結(jié)果建立了混凝土的各項(xiàng)指標(biāo)與受熱溫度的曲線。二、高性能混凝土高溫?zé)嶙冃卧囼?yàn),研究聚丙烯纖維摻量為0%、0.1%、0.2%、0.3%的混凝土板,在其中不同深度埋入混凝土正弦應(yīng)變計(jì)和高溫?zé)犭娕?并且在其中布置了單層鋼筋網(wǎng),通過高溫電阻爐將混凝板土進(jìn)行加熱,試驗(yàn)結(jié)果表明熱應(yīng)變總體上隨溫度的升高而升高,摻纖維混凝土板的熱應(yīng)變要低于不摻纖維的混凝土板,并且熱應(yīng)變隨著纖維摻量的增加而逐漸減小,鋼筋網(wǎng)深度附近的熱應(yīng)變要明顯低于其他位置。三、明火與荷載耦合下的高溫?zé)嶙冃卧囼?yàn),研究聚丙烯纖維摻量為0%、0.2%的混凝土大板,與混凝土小板相同在其中布置了單層鋼筋網(wǎng)和正弦應(yīng)變計(jì),并且通過計(jì)算后在混凝土板上施加了相應(yīng)的荷載,將混凝土大板通過明火進(jìn)行加熱,試驗(yàn)結(jié)果表明熱應(yīng)變總體上隨著溫度的升高而升高,上升速率高明顯高于在高溫電阻爐里加熱的情況。四、高性能混凝土板熱應(yīng)力探索性模擬研究,通過ABAQUS模擬軟件初步分析了摻0.2%聚丙烯纖維的混凝土板高溫?zé)釕?yīng)變的發(fā)展情況,為了與實(shí)際工程結(jié)合地更緊密,選取了較大尺寸的混凝土板進(jìn)行探索性模擬。由于模型未考慮混凝土應(yīng)該含有的孔隙、含水量、非均質(zhì)等特性,因此模擬結(jié)果與實(shí)際結(jié)果有一些誤差,結(jié)果表明在混凝土板厚度方向形成了溫度梯度,模擬結(jié)果與試驗(yàn)結(jié)果對(duì)比分析發(fā)現(xiàn)在同一深度處溫度和熱應(yīng)力隨時(shí)間的變化趨勢(shì)基本一致。
[Abstract]:High performance concrete (HPC) has been widely used in civil engineering because of its good comprehensive performance. However, high performance concrete (HPC) suffers from high fire temperature because of its high density and low permeability. Because of the internal steam pressure, thermal deformation and temperature stress and other factors, it is easy to cause the concrete burst, fall off, reduce or even collapse of the bearing capacity. The safety of buildings and the life and property of people will be threatened, so the high temperature performance of high performance concrete is studied, and the damage law of internal stress and macroscopic bearing capacity with temperature is revealed. It is of great theoretical significance and engineering value. Based on the National Natural Fund 51478290, the influence of high temperature on mechanical properties of C60 high performance concrete is studied. The relationship between high temperature and temperature field and thermal strain of concrete slab is studied by means of thermocouple and sine strain gauge. With the help of ABAQUS software, the development of internal thermal stress and crack and the deformation of members of high performance concrete slab at high temperature are studied. The main contents are as follows. The splitting tensile strength, axial compressive strength and elastic modulus of high performance concrete without or without 0.2% polypropylene fiber at high temperature were studied. The results show that the mechanical properties of concrete decrease with the increase of temperature, but the deterioration of fiber reinforced concrete is obviously lower than that of plain concrete. Based on the test results, the curves of concrete indexes and heating temperature are established. Secondly, the high performance concrete hot deformation test at high temperature, the content of polypropylene fiber is 0. 1% and 0. 2%. 0.3% concrete slabs are embedded in concrete sinusoidal strain gauges and high-temperature thermocouples at different depths, and a single-layer steel mesh is arranged in the concrete slabs, which are heated by high temperature resistance furnace. The results show that the thermal strain increases with the increase of temperature, and the thermal strain of fiber reinforced concrete slab is lower than that of concrete slab without fiber, and the thermal strain decreases with the increase of fiber content. The thermal strain near the depth of steel mesh is obviously lower than that in other places. Thirdly, under the coupling of open fire and load, the high temperature thermal deformation test is carried out to study the large concrete slab with polypropylene fiber content of 0.2%. In the same way as the concrete slabs, single-layer steel mesh and sinusoidal strain gauges are arranged in them, and the corresponding loads are applied to the concrete slabs after calculation, and the large concrete slabs are heated through open fire. The experimental results show that the thermal strain generally increases with the increase of temperature, and the rising rate is obviously higher than that of heating in high temperature resistance furnace. Fourthly, the exploratory simulation study on thermal stress of high performance concrete slabs. The development of high temperature thermal strain of concrete slab doped with 0.2% polypropylene fiber was analyzed by ABAQUS simulation software, in order to be more closely combined with practical engineering. Large size concrete slabs are selected for exploratory simulation. Because the model does not consider the pore, water content, heterogeneity and other characteristics of concrete, there are some errors between the simulation results and the actual results. The results show that the temperature gradient is formed in the direction of concrete slab thickness, and the comparison between the simulation results and the experimental results shows that the variation trend of temperature and thermal stress with time is basically the same at the same depth.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TU528
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 史英豪;杜紅秀;閻蕊珍;;高溫下C60高性能混凝土熱膨脹性能[J];科學(xué)技術(shù)與工程;2016年23期
2 譚清華;周侃;;升、降溫火災(zāi)下混凝土瞬態(tài)熱應(yīng)變的計(jì)算[J];工程力學(xué);2015年S1期
3 王飛劍;張琦;杜紅秀;閻蕊珍;;摻聚丙烯纖維高強(qiáng)混凝土高溫后導(dǎo)溫性能研究[J];混凝土與水泥制品;2014年12期
4 吳躍紅;曾世東;;振弦式應(yīng)變計(jì)測(cè)試混凝土線膨脹系數(shù)的研究[J];交通標(biāo)準(zhǔn)化;2014年23期
5 王里;劉紅彬;鞠楊;劉金慧;田開培;葛志順;;高強(qiáng)高性能混凝土高溫爆裂機(jī)理研究進(jìn)展[J];力學(xué)與實(shí)踐;2014年04期
6 王勇;董毓利;袁廣林;王耀;;考慮瞬態(tài)熱應(yīng)變的鋼筋混凝土板火災(zāi)反應(yīng)分析[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年06期
7 柴松華;杜紅秀;閻蕊珍;;高強(qiáng)混凝土高溫后軸心抗壓強(qiáng)度試驗(yàn)研究[J];硅酸鹽通報(bào);2013年11期
8 尹強(qiáng);;聚丙烯纖維對(duì)高強(qiáng)混凝土高溫后力學(xué)性能的影響[J];太原理工大學(xué)學(xué)報(bào);2013年05期
9 胡昌斌;金王杰;孫增華;;水泥混凝土路面早齡期溫度場(chǎng)數(shù)值模擬研究[J];工程力學(xué);2013年04期
10 蒙玉勇;王建軍;周俐;王向紅;;不同鋼種導(dǎo)熱系數(shù)隨溫度變化規(guī)律的研究[J];鋼鐵釩鈦;2013年03期
相關(guān)會(huì)議論文 前1條
1 李玉龍;郭亞洲;胡海濤;索濤;李娜;胡銳;;幾種典型金屬在高溫下的動(dòng)態(tài)力學(xué)性能測(cè)試[A];Hopkinson桿實(shí)驗(yàn)技術(shù)研討會(huì)會(huì)議論文集[C];2007年
相關(guān)博士學(xué)位論文 前1條
1 李海艷;活性粉末混凝土高溫爆裂及高溫后力學(xué)性能研究[D];哈爾濱工業(yè)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 張橋;高性能混凝土高溫?fù)p傷試驗(yàn)及溫度場(chǎng)模擬研究[D];太原理工大學(xué);2016年
2 高宇劍;高強(qiáng)混凝土火災(zāi)后力學(xué)性能退化及高溫爆裂機(jī)理研究[D];中國礦業(yè)大學(xué);2014年
3 趙麗;金屬材料高溫力學(xué)行為研究[D];太原科技大學(xué);2013年
4 高超;混凝土及纖維混凝土高溫后力學(xué)性能試驗(yàn)研究[D];揚(yáng)州大學(xué);2013年
5 溫樂明;混凝土組成對(duì)材料力學(xué)和熱學(xué)性能的影響[D];濟(jì)南大學(xué);2013年
6 操龍飛;金屬材料的熱膨脹特性研究[D];武漢科技大學(xué);2013年
7 漆雅慶;火災(zāi)下鋼筋混凝土構(gòu)件的非線性有限元分析研究[D];華南理工大學(xué);2011年
8 王慧芳;聚丙烯纖維高強(qiáng)混凝土高溫性能研究[D];太原理工大學(xué);2011年
9 王輝;大體積混凝土結(jié)構(gòu)溫度應(yīng)力有限元分析[D];西安建筑科技大學(xué);2010年
10 吳軍;火災(zāi)高溫下鋼筋混凝土連續(xù)梁非線性有限元分析[D];武漢理工大學(xué);2007年
,本文編號(hào):1474015
本文鏈接:http://www.sikaile.net/jianzhugongchenglunwen/1474015.html