曼德爾布羅特分形市模型分析
發(fā)布時間:2022-08-23 17:33
這篇論文是關(guān)于一個股票時間序列新模型的研究。一九九七年,曼德爾布羅特(BenoitMandelbrot)提出了這個新股票模型。Mandelbrot主要用分形理論模仿真正的股票時間序列。我的論文研究的一個目的就是說明為什么分形理論在金融市場(股票,國際兌換率和商品指數(shù)等)方面是有效的。這個新股票模型引入了新的分析工具。其中,赫斯特(Hurst)指數(shù)和R/S分析就是Mandelbrot模型的重要工具。這篇論文的另一個目的就是研究清楚這兩個工具。最后,我將在論文用中國股票時間序列,國際兌換率和商品指數(shù)三項金融市場指數(shù)來驗證這個新模型的有效性。 這篇論文主要分為4個部分。第一個部分是關(guān)于經(jīng)典和新股票時間序列的模型的,主要是介紹這些模型創(chuàng)造的理由和新舊兩個模型的比較。第二部分是對曼德爾布羅特引入的兩個重要工具的研究:赫斯特指數(shù)和R/S分析。這個部分主要說明它們的特點和有效性。第三個部分是關(guān)于Mandelbrot的新股票模型的研究。這個部分說明怎么樣利用這個新的模型真正創(chuàng)造一個時像真實的股票時間序列。最后一個部分包括所有數(shù)據(jù)試驗的結(jié)果(模型比較,Hurst指數(shù)的計算和說明,Hurst指數(shù)的...
【文章頁數(shù)】:51 頁
【學(xué)位級別】:碩士
【文章目錄】:
Abstract
詳細摘要
1 Models of market
1.1 Market Theories
1.2 Classic model of stock time series
1.2.1 Random Walk
1.2.2 Brownian Motion
1.2.3 Arbitrage Theorem
1.2.4 Black-Scholes Formula
1.3 Limits of classic model
1.4 Fractals in Markets
1.4.1 Non independence
1.4.2 Turbulence
2 Hurst Coefficient,R/S Analysis
2.1 History and Main Idea
2.2 Hurst Exponent and Fractal Dimension
2.2.1 Self-similar Processes
2.2.2 Fractional Brownian Motion
2.2.3 Correlation function properties
2.2.4 Long-range dependence
2.3 R/S Analysis
2.3.1 Independent Processes
2.3.2 R/S Analysis
2.3.3 Hurst Exponent
2.3.4 Efficiency
3 Building Mandelbrot's Model
3.1 Ideas
3.2 Generator
3.2.1 Unit Generators
3.2.2 Turbulence
3.2.3 Hurst parameter
3.3 Multifractality
3.3.1 Relation between generators
3.3.2 Mathematical terms
4 Experiments on Data
4.1 Difference between models and reality
4.1.1 Independence/dependence
4.1.2 Normality
4.1.3 Correlation
4.2 Real Stock Hurst coefficient
4.2.1 Hurst computed
4.2.2 Findings
4.2.3 Explanation
4.3 Predictability
4.3.1 Goals and ideas
4.3.2 Results
4.4 Close looks on the RS Analysis
4.5 Conclusion
Appendix A Thanks and Statement
Appendix B References
B.1 Books and papers
B.2 Web resources
Appendix C Matlab
C.1 RS Analysis
C.2 Recherche Possible Evolutions
C.3 Other codes
本文編號:3678192
【文章頁數(shù)】:51 頁
【學(xué)位級別】:碩士
【文章目錄】:
Abstract
詳細摘要
1 Models of market
1.1 Market Theories
1.2 Classic model of stock time series
1.2.1 Random Walk
1.2.2 Brownian Motion
1.2.3 Arbitrage Theorem
1.2.4 Black-Scholes Formula
1.3 Limits of classic model
1.4 Fractals in Markets
1.4.1 Non independence
1.4.2 Turbulence
2 Hurst Coefficient,R/S Analysis
2.1 History and Main Idea
2.2 Hurst Exponent and Fractal Dimension
2.2.1 Self-similar Processes
2.2.2 Fractional Brownian Motion
2.2.3 Correlation function properties
2.2.4 Long-range dependence
2.3 R/S Analysis
2.3.1 Independent Processes
2.3.2 R/S Analysis
2.3.3 Hurst Exponent
2.3.4 Efficiency
3 Building Mandelbrot's Model
3.1 Ideas
3.2 Generator
3.2.1 Unit Generators
3.2.2 Turbulence
3.2.3 Hurst parameter
3.3 Multifractality
3.3.1 Relation between generators
3.3.2 Mathematical terms
4 Experiments on Data
4.1 Difference between models and reality
4.1.1 Independence/dependence
4.1.2 Normality
4.1.3 Correlation
4.2 Real Stock Hurst coefficient
4.2.1 Hurst computed
4.2.2 Findings
4.2.3 Explanation
4.3 Predictability
4.3.1 Goals and ideas
4.3.2 Results
4.4 Close looks on the RS Analysis
4.5 Conclusion
Appendix A Thanks and Statement
Appendix B References
B.1 Books and papers
B.2 Web resources
Appendix C Matlab
C.1 RS Analysis
C.2 Recherche Possible Evolutions
C.3 Other codes
本文編號:3678192
本文鏈接:http://www.sikaile.net/guanlilunwen/zhqtouz/3678192.html
最近更新
教材專著