基于混沌時(shí)間序列及彈性反饋算法的股票預(yù)測(cè)方法研究
[Abstract]:With the rapid development of Chinese economy, the concept of financial management is gradually established in the popular psychology, and the stock is always favored by the masses. Stock is one of the important means of market economy financing. The development of stock market not only reflects the development of national economy, but also relates to the vital interests of thousands of households. The chaos of nature is everywhere, and the stock market run by man is a chaotic system. Therefore, in this paper, the stock price trend is predicted by chaotic time series and elastic feedback neural network. The main contents are as follows: firstly, the chaotic dynamics and chaotic time series theory are introduced. This paper first introduces the phenomena of chaos, the definition of chaos, the basic characteristics of chaos, and the basic knowledge of chaos such as Lyapunov exponent. Then, the knowledge of chaotic time series is briefly introduced, including the reconstruction of phase space, the determination of time delay and embedding dimension, and the prediction method of maximum Lyapunov exponent. Secondly, the basic knowledge of neural network is introduced, the principle of feedback neural network is introduced in detail, the main algorithms of feedback neural network are introduced, and their advantages and disadvantages are compared. Finally, the paper demonstrates why the elastic neural network algorithm is chosen as the prediction method in this paper. Finally, the method of combining chaotic time series with elastic feedback neural network is used to predict and analyze the stock data. The prediction results are compared with those of the largest Lyapunov exponent and the classical feedback neural network. The results show that the accuracy and performance of stock prediction are improved by using chaotic time series and elastic feedback algorithm.
【學(xué)位授予單位】:南京航空航天大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類(lèi)號(hào)】:F832.51;F224
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 吳微,陳維強(qiáng),劉波;用BP神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)股票市場(chǎng)漲跌[J];大連理工大學(xué)學(xué)報(bào);2001年01期
2 文新輝;時(shí)間序列神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)方法[J];電子科學(xué)學(xué)刊;1994年05期
3 張健,陳勇,夏罡,何永保;人工神經(jīng)網(wǎng)絡(luò)之股票預(yù)測(cè)[J];計(jì)算機(jī)工程;1997年02期
4 潘昊,王曉勇,陳瓊,黃少鑾;基于遺傳算法的BP神經(jīng)網(wǎng)絡(luò)技術(shù)的應(yīng)用[J];計(jì)算機(jī)應(yīng)用;2005年12期
5 梁夏;具有自糾錯(cuò)功能的人工神經(jīng)網(wǎng)絡(luò)在股票滾動(dòng)預(yù)測(cè)上的應(yīng)用[J];計(jì)算機(jī)應(yīng)用研究;1999年01期
6 吳成東,王長(zhǎng)濤;人工神經(jīng)元BP網(wǎng)絡(luò)在股市預(yù)測(cè)方面的應(yīng)用[J];控制工程;2002年03期
7 丁剛;鐘詩(shī)勝;;基于過(guò)程神經(jīng)網(wǎng)絡(luò)的時(shí)間序列預(yù)測(cè)及其應(yīng)用研究[J];控制與決策;2006年09期
8 王上飛,周佩玲,吳耿峰,付忠謙,儲(chǔ)閱春,沈謙;徑向基神經(jīng)網(wǎng)絡(luò)在股市預(yù)測(cè)中的應(yīng)用[J];預(yù)測(cè);1998年06期
9 馬軍海;王志強(qiáng);陳予恕;;低噪聲水平混沌時(shí)序的預(yù)測(cè)技術(shù)及其應(yīng)用研究[J];應(yīng)用數(shù)學(xué)和力學(xué);2006年01期
,本文編號(hào):2215906
本文鏈接:http://www.sikaile.net/guanlilunwen/zhqtouz/2215906.html