大數(shù)據(jù)背景下網(wǎng)絡(luò)借貸平臺(tái)用戶二次貸款預(yù)測(cè)研究
本文選題:網(wǎng)絡(luò)借貸 切入點(diǎn):精準(zhǔn)借貸 出處:《山西財(cái)經(jīng)大學(xué)》2017年碩士論文
【摘要】:網(wǎng)絡(luò)借貸是我國(guó)新型金融體系建設(shè)的重要組成部分,有利于解決中小企業(yè)融資難的問(wèn)題,一定程度上促進(jìn)了我國(guó)經(jīng)濟(jì)的發(fā)展。然而不少網(wǎng)絡(luò)借貸平臺(tái)面臨生存危機(jī),原因是平臺(tái)自身經(jīng)營(yíng)成本高,沒(méi)有制定科學(xué)的營(yíng)銷策略,投入大量線下和線上推廣卻難見(jiàn)成效。為了能夠解決上述問(wèn)題,網(wǎng)絡(luò)借貸平臺(tái)需要借助大數(shù)據(jù)技術(shù)對(duì)用戶行為進(jìn)行分析和預(yù)測(cè),從而更加了解客戶需求,制定有針對(duì)性的營(yíng)銷策略。網(wǎng)絡(luò)借貸平臺(tái)二次貸款預(yù)測(cè)研究有利于網(wǎng)絡(luò)借貸平臺(tái)對(duì)用戶是否由再次貸款需求進(jìn)行預(yù)測(cè),從而提高營(yíng)銷轉(zhuǎn)化率,進(jìn)而提高其盈利能力。本文以網(wǎng)絡(luò)借貸平臺(tái)二次貸款預(yù)測(cè)為目標(biāo),研究了如下內(nèi)容:首先結(jié)合網(wǎng)絡(luò)借貸和精準(zhǔn)營(yíng)銷理論,提出了精準(zhǔn)借貸這一概念,并分析了大數(shù)據(jù)背景下網(wǎng)絡(luò)借貸平臺(tái)精準(zhǔn)借貸的流程。其次,對(duì)網(wǎng)絡(luò)借貸平臺(tái)的用戶數(shù)據(jù)進(jìn)行分析和整理,初步構(gòu)建了網(wǎng)絡(luò)借貸平臺(tái)用戶二次貸款指標(biāo)體系;利用具有較好的特征選擇能力的彈性網(wǎng)方法對(duì)指標(biāo)進(jìn)行篩選,選擇出具有重要意義的指標(biāo)。然后,在此基礎(chǔ)上將稀疏貝葉斯網(wǎng)絡(luò)結(jié)構(gòu)學(xué)習(xí)方法應(yīng)用于網(wǎng)絡(luò)借貸用戶行為分析中,并證明該方法優(yōu)于一般的貝葉斯網(wǎng)絡(luò);通過(guò)分析指標(biāo)之間的關(guān)系,研究出網(wǎng)絡(luò)借貸平臺(tái)用戶的行為關(guān)系和重要特點(diǎn)。接著,充分利用Xg-boost這一集成算法的優(yōu)勢(shì),將其應(yīng)用于網(wǎng)絡(luò)借貸用戶二次貸款預(yù)測(cè)中,并采用分類正確率和時(shí)間復(fù)雜度兩個(gè)評(píng)價(jià)指標(biāo)進(jìn)行預(yù)測(cè)模型評(píng)估,取得良好的效果,證明該算法適合在類似的問(wèn)題中被廣泛推廣和應(yīng)用。最后根據(jù)分析結(jié)果并結(jié)合網(wǎng)絡(luò)借貸發(fā)展形勢(shì),提出平臺(tái)為了實(shí)現(xiàn)精準(zhǔn)借貸可以充分利用用戶信息,構(gòu)建用戶行為網(wǎng)絡(luò)和預(yù)測(cè)模型,為制定精準(zhǔn)借貸策略提供數(shù)據(jù)支持。本文得出的主要結(jié)論有:(1)網(wǎng)絡(luò)借貸平臺(tái)用戶二次貸款預(yù)測(cè)為平臺(tái)精準(zhǔn)借貸提供數(shù)據(jù)支持,對(duì)于平臺(tái)服務(wù)策略制定具有指導(dǎo)性意義;(2)彈性網(wǎng)方法在變量篩選中的應(yīng)用有選擇重要變量構(gòu)建模型,提高模型分類性能;(3)消費(fèi)記錄和社會(huì)資本的引入可以提高模型的分類正確率;(4)Xg-boost模型在網(wǎng)絡(luò)借貸平臺(tái)二次貸款的預(yù)測(cè)性能中優(yōu)于其他集成分類器且時(shí)間復(fù)雜度低,適宜推廣。
[Abstract]:Network lending is an important part of the construction of new financial system in China, which is helpful to solve the problem of financing difficulties for small and medium-sized enterprises, and to some extent promotes the development of our economy. However, many online lending platforms are faced with survival crisis. The reason is that the platform itself has high operating costs, no scientific marketing strategy, a large amount of offline and online promotion is difficult to see results. Online lending platforms need to use big data technology to analyze and predict user behavior in order to better understand customer needs. The research on the secondary loan forecast of the network loan platform is helpful for the network loan platform to predict whether the users' demand for the second loan will be predicted by the second loan, thus increasing the marketing conversion rate. In order to improve its profitability, this paper aims at the second loan forecast of network lending platform, and studies the following contents: firstly, combining the theory of network lending and precision marketing, the concept of precision lending is put forward. And analyzes the network lending platform precision lending process under the background of big data. Secondly, the user data of the network lending platform is analyzed and collated, and the user secondary loan index system of the network lending platform is preliminarily constructed. Using the elastic network method with better feature selection ability to screen the index and select the important index. Then, the sparse Bayesian network structure learning method is applied to the behavior analysis of the network lending user, based on which the sparse Bayesian network structure learning method is applied to the behavior analysis of the network loan user. It is proved that this method is superior to the general Bayesian network, and through the analysis of the relationship between the indexes, the behavior relationship and important characteristics of the users of the network lending platform are studied. Then, the advantages of the Xg-boost integration algorithm are fully utilized. It is applied to the secondary loan prediction of network loan users, and two evaluation indexes, the classification accuracy and the time complexity, are used to evaluate the prediction model, and good results are obtained. It is proved that the algorithm is suitable to be widely used in similar problems. Finally, according to the analysis results and combined with the development situation of network lending, the platform can make full use of user information in order to realize precision lending. Build user behavior network and forecast model to provide data support for the development of precision lending strategy. The main conclusions of this paper are: 1) the network lending platform user second loan forecast provides data support for the platform precision lending. For the application of the flexible network method in variable selection, the important variables are selected to build the model, which is of guiding significance to the development of platform service strategy. To improve the classification performance of the model, the consumption record and the introduction of social capital can improve the classification accuracy of the model and the 4Xg-boost model is superior to other integrated classifiers in the prediction performance of the secondary loan in the network lending platform, and the time complexity is low, and the model is suitable for popularization.
【學(xué)位授予單位】:山西財(cái)經(jīng)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F724.6;F832.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁霄波;;電信客戶細(xì)分中基于聚類算法的數(shù)據(jù)挖掘技術(shù)研究[J];現(xiàn)代電子技術(shù);2016年15期
2 柳向東;李鳳;;大數(shù)據(jù)背景下網(wǎng)絡(luò)借貸的信用風(fēng)險(xiǎn)評(píng)估——以人人貸為例[J];統(tǒng)計(jì)與信息論壇;2016年05期
3 葉志龍;黃章樹;;基于新三維客戶細(xì)分模型的線上會(huì)員客戶價(jià)值研究[J];統(tǒng)計(jì)與信息論壇;2016年05期
4 丁騁騁;邱瑾;;性別與信用:非法集資主角的微觀個(gè)體特征——基于網(wǎng)絡(luò)數(shù)據(jù)挖掘的分析[J];財(cái)貿(mào)經(jīng)濟(jì);2016年03期
5 陶豐;;網(wǎng)絡(luò)借貸平臺(tái)營(yíng)銷戰(zhàn)略研究[J];科技創(chuàng)業(yè)月刊;2016年05期
6 劉海;盧慧;阮金花;田丙強(qiáng);胡守忠;;基于“用戶畫像”挖掘的精準(zhǔn)營(yíng)銷細(xì)分模型研究[J];絲綢;2015年12期
7 肖志良;;基于學(xué)習(xí)型三維大數(shù)據(jù)的企業(yè)精準(zhǔn)營(yíng)銷服務(wù)模式探討[J];商業(yè)經(jīng)濟(jì)研究;2015年23期
8 黃本新;;抉擇之道:P2P網(wǎng)貸平臺(tái)營(yíng)銷經(jīng)營(yíng)前景考量[J];特區(qū)經(jīng)濟(jì);2015年07期
9 王克富;;論大數(shù)據(jù)視角下零售業(yè)精準(zhǔn)營(yíng)銷的應(yīng)用實(shí)現(xiàn)[J];商業(yè)經(jīng)濟(jì)研究;2015年06期
10 肖曼君;歐緣媛;李穎;;我國(guó)P2P網(wǎng)絡(luò)借貸信用風(fēng)險(xiǎn)影響因素研究——基于排序選擇模型的實(shí)證分析[J];財(cái)經(jīng)理論與實(shí)踐;2015年01期
相關(guān)博士學(xué)位論文 前1條
1 程鑫;基于支持向量機(jī)的農(nóng)戶信用評(píng)價(jià)研究[D];山西財(cái)經(jīng)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前1條
1 陳威;結(jié)合模糊分類的貝葉斯網(wǎng)絡(luò)在信用風(fēng)險(xiǎn)評(píng)估中的應(yīng)用[D];吉林大學(xué);2010年
,本文編號(hào):1664034
本文鏈接:http://www.sikaile.net/guanlilunwen/yingxiaoguanlilunwen/1664034.html