網(wǎng)絡安全態(tài)勢的評估與預測技術研究
[Abstract]:With the arrival of the information age, the Internet has been rapidly developed and popularized. But at the same time, it also brings serious harm to people's life, that is, network security incidents occur frequently. Although there are a variety of network security devices available to protect Internet security, because they are designed for different security issues, they are specific and have different emphases. So this leads to their inability to evaluate and predict the security of the entire network. In this paper, through the detailed analysis and research on the current network security situation assessment and prediction methods, it is shown that how to improve the prediction accuracy and convergence rate of network security situation prediction is still a hot issue to be solved. In order to improve the prediction accuracy of network security situation prediction, a radial basis function neural network security situation prediction model based on dichotomous K-means is proposed in this paper. In this method, the binary K-means clustering algorithm is used to determine the data center and the expansion function of the radial basis function neural network, which makes up for the difficulty of determining the data center of the radial basis function neural network. The experimental results show that this method can improve the prediction accuracy under certain conditions. In order to improve the convergence rate of network security situation prediction, a network security situation prediction method based on improved artificial immune is proposed in this paper. It makes up for the data redundancy in the process of generating the initial antibody randomly. Experimental results show that the proposed method improves the convergence rate of prediction.
【學位授予單位】:北京郵電大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP393.08
【參考文獻】
相關期刊論文 前10條
1 陳善學;楊政;朱江;李方偉;;一種基于累加PSO-SVM的網(wǎng)絡安全態(tài)勢預測模型[J];計算機應用研究;2015年06期
2 李方偉;鄧武;朱江;;一種基于復雜網(wǎng)絡的網(wǎng)絡安全態(tài)勢預測機制[J];計算機應用研究;2015年04期
3 李方偉;鄭波;朱江;張海波;;一種基于AC-RBF神經網(wǎng)絡的網(wǎng)絡安全態(tài)勢預測方法[J];重慶郵電大學學報(自然科學版);2014年05期
4 黃同慶;莊毅;;一種實時網(wǎng)絡安全態(tài)勢預測方法[J];小型微型計算機系統(tǒng);2014年02期
5 劉雷雷;臧洌;邱相存;;基于Kalman算法的網(wǎng)絡安全態(tài)勢預測[J];計算機與數(shù)字工程;2014年01期
6 謝麗霞;王亞超;于巾博;;基于神經網(wǎng)絡的網(wǎng)絡安全態(tài)勢感知[J];清華大學學報(自然科學版);2013年12期
7 石波;謝小權;;基于D-S證據(jù)理論的網(wǎng)絡安全態(tài)勢預測方法研究[J];計算機工程與設計;2013年03期
8 曾斌;鐘萍;;網(wǎng)絡安全態(tài)勢預測方法的仿真研究[J];計算機仿真;2012年05期
9 卓瑩;張強;龔正虎;;網(wǎng)絡態(tài)勢預測的廣義回歸神經網(wǎng)絡模型[J];解放軍理工大學學報(自然科學版);2012年02期
10 王庚;張景輝;吳娜;;網(wǎng)絡安全態(tài)勢預測方法的應用研究[J];計算機仿真;2012年02期
相關會議論文 前1條
1 韓偉紅;隋品波;賈焰;;大規(guī)模網(wǎng)絡安全態(tài)勢分析與預測系統(tǒng)YHSAS[A];第27次全國計算機安全學術交流會論文集[C];2012年
相關博士學位論文 前1條
1 孟錦;網(wǎng)絡安全態(tài)勢評估與預測關鍵技術研究[D];南京理工大學;2012年
,本文編號:2378931
本文鏈接:http://www.sikaile.net/guanlilunwen/ydhl/2378931.html