天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于優(yōu)化神經(jīng)網(wǎng)絡(luò)的無(wú)線網(wǎng)絡(luò)流量預(yù)測(cè)方法研究

發(fā)布時(shí)間:2018-02-09 21:04

  本文關(guān)鍵詞: 無(wú)線網(wǎng)絡(luò) 流量建模預(yù)測(cè) 服務(wù)質(zhì)量 神經(jīng)網(wǎng)絡(luò) 穩(wěn)定小波變換 量子遺傳算法 出處:《北京郵電大學(xué)》2014年碩士論文 論文類型:學(xué)位論文


【摘要】:無(wú)線網(wǎng)絡(luò)在信息化社會(huì)中扮演著越來(lái)越重要的角色。無(wú)線網(wǎng)絡(luò)能夠輕易、有效的進(jìn)行高速通信,為人們的生活提供便利的同時(shí),也為國(guó)家經(jīng)濟(jì)、政治、軍事帶來(lái)了新的發(fā)展契機(jī)。隨著越來(lái)越多的無(wú)線寬帶網(wǎng)絡(luò)接入點(diǎn)部署在生產(chǎn)生活中,無(wú)線網(wǎng)絡(luò)規(guī)模日益龐大,環(huán)境日趨復(fù)雜,網(wǎng)絡(luò)運(yùn)營(yíng)商缺乏有效保證無(wú)線網(wǎng)絡(luò)服務(wù)質(zhì)量(QoS)的手段,對(duì)于無(wú)線網(wǎng)絡(luò)流量的模型、特征、可靠性需要進(jìn)一步研究,使得保障網(wǎng)絡(luò)QoS、維護(hù)網(wǎng)絡(luò)安全、網(wǎng)絡(luò)故障檢測(cè)等工作難以深入開展,網(wǎng)絡(luò)流量的建模預(yù)測(cè)已經(jīng)成為解決這一問題的主要工具。本文針對(duì)無(wú)線網(wǎng)絡(luò)流量本身和基于優(yōu)化人工神經(jīng)網(wǎng)絡(luò)的建模預(yù)測(cè)進(jìn)行了系統(tǒng)研究。 為掌握無(wú)線網(wǎng)絡(luò)流量的預(yù)測(cè)方法,本文首先對(duì)無(wú)線網(wǎng)絡(luò)流量數(shù)據(jù)進(jìn)行了研究,通過(guò)分析其統(tǒng)計(jì)特性、相關(guān)特性、自相似性、混沌特性等,并與有線網(wǎng)絡(luò)流量對(duì)比,驗(yàn)證了無(wú)線網(wǎng)絡(luò)流量具有更強(qiáng)的分散性、突發(fā)性和混沌特性。 接著,本文對(duì)時(shí)間序列預(yù)測(cè)方法進(jìn)行了調(diào)研,分析了傳統(tǒng)時(shí)間序列分析、混沌時(shí)間序列分析的方法,進(jìn)一步研究ARIMA模型和混沌RBF神經(jīng)網(wǎng)絡(luò)模型的預(yù)測(cè)方法,發(fā)現(xiàn)這些模型在網(wǎng)絡(luò)流量預(yù)測(cè)中存在一定缺陷,需要更精確的模型來(lái)預(yù)測(cè)無(wú)線流量。 然后,本文重點(diǎn)研究BP神經(jīng)網(wǎng)絡(luò)、量子遺傳算法和小波變換理論,深入探討B(tài)P神經(jīng)網(wǎng)絡(luò)的概念、原理和優(yōu)缺點(diǎn),分析神經(jīng)網(wǎng)絡(luò)優(yōu)化的方法,提出一種利用量子遺傳算法高效的全局搜索能力來(lái)優(yōu)化神經(jīng)網(wǎng)絡(luò)的方法。在此基礎(chǔ)之上,結(jié)合穩(wěn)定小波變換,利用BP神經(jīng)網(wǎng)絡(luò)良好的魯棒性和非線性處理能力,提出一種基于優(yōu)化神經(jīng)網(wǎng)絡(luò)的混合無(wú)線網(wǎng)絡(luò)流量預(yù)測(cè)模型,命名為SWT-QGA-BP模型。 最后,仿真實(shí)驗(yàn)對(duì)無(wú)線網(wǎng)絡(luò)流量進(jìn)行單步、多步預(yù)測(cè),結(jié)合預(yù)測(cè)評(píng)估指標(biāo),對(duì)提出的SWT-QGA-BP模型的預(yù)測(cè)結(jié)果進(jìn)行評(píng)價(jià),對(duì)比ARIMA模型和混沌RBF神經(jīng)網(wǎng)絡(luò)模型,驗(yàn)證了新模型的自適應(yīng)性和預(yù)測(cè)性能優(yōu)越性。提出的SWT-QGA-BP模型能夠更加準(zhǔn)確高效的對(duì)無(wú)線網(wǎng)絡(luò)流量進(jìn)行預(yù)測(cè),有能力為網(wǎng)絡(luò)保障QOS、網(wǎng)絡(luò)資源管理、網(wǎng)絡(luò)安全維護(hù)提供必要的助力。
[Abstract]:Wireless network plays a more and more important role in the information society. Wireless network can easily and effectively carry out high-speed communication, provide convenience for people's life, at the same time, it is also good for national economy and politics. As more and more wireless broadband network access points are deployed in production and daily life, the scale of wireless network is becoming larger and larger, and the environment is becoming more and more complex. Network operators lack of effective means to ensure the quality of service (QoS) of wireless networks. The model, characteristics and reliability of wireless network traffic need further study to ensure network QoS and maintain network security. Network fault detection is difficult to carry out in depth, and modeling and forecasting of network traffic has become the main tool to solve this problem. In this paper, wireless network traffic itself and modeling and prediction based on optimized artificial neural network are systematically studied. In order to master the prediction method of wireless network traffic, this paper first studies the wireless network traffic data, through the analysis of its statistical characteristics, correlation characteristics, self-similarity, chaos characteristics, and so on, and compared with the wired network traffic. It is proved that wireless network traffic has more dispersive, sudden and chaotic characteristics. Then, this paper investigates the prediction methods of time series, analyzes the methods of traditional time series analysis and chaotic time series analysis, and further studies the prediction methods of ARIMA model and chaotic RBF neural network model. It is found that these models have some defects in network traffic prediction, and more accurate models are needed to predict wireless traffic. Then, this paper focuses on BP neural network, quantum genetic algorithm and wavelet transform theory, deeply discusses the concept, principle, advantages and disadvantages of BP neural network, and analyzes the optimization method of neural network. This paper presents a method of optimizing neural network by using the high efficient global search ability of quantum genetic algorithm. On this basis, combining with stable wavelet transform, the good robustness and nonlinear processing ability of BP neural network are utilized. A hybrid wireless network traffic prediction model, named SWT-QGA-BP model, is proposed based on optimized neural network. Finally, the simulation experiments are used to predict the wireless network traffic in single step and multi-step. Combined with the prediction evaluation index, the prediction results of the proposed SWT-QGA-BP model are evaluated, and the comparison between the ARIMA model and the chaotic RBF neural network model is carried out. The proposed SWT-QGA-BP model can predict wireless network traffic more accurately and efficiently, and can provide necessary assistance for QoS, network resource management and network security maintenance.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TP18;TP393.06

【參考文獻(xiàn)】

相關(guān)期刊論文 前6條

1 鄒柏賢,劉強(qiáng);基于ARMA模型的網(wǎng)絡(luò)流量預(yù)測(cè)[J];計(jì)算機(jī)研究與發(fā)展;2002年12期

2 王俊松;高志偉;;基于RBF神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)流量建模及預(yù)測(cè)[J];計(jì)算機(jī)工程與應(yīng)用;2008年13期

3 洪飛;吳志美;;基于小波的多尺度網(wǎng)絡(luò)流量預(yù)測(cè)模型[J];計(jì)算機(jī)學(xué)報(bào);2006年01期

4 陸錦軍;王執(zhí)銓;;基于混沌特性的網(wǎng)絡(luò)流量預(yù)測(cè)[J];南京航空航天大學(xué)學(xué)報(bào);2006年02期

5 張晗;王霞;;基于小波分解的網(wǎng)絡(luò)流量時(shí)間序列建模與預(yù)測(cè)[J];計(jì)算機(jī)應(yīng)用研究;2012年08期

6 陳曉天;劉靜嫻;;改進(jìn)的基于小波變換和FARIMA模型的網(wǎng)絡(luò)流量預(yù)測(cè)算法[J];通信學(xué)報(bào);2011年04期

,

本文編號(hào):1498857

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/guanlilunwen/ydhl/1498857.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶33ae0***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com