基于數(shù)據(jù)挖掘的郵儲銀行卡客戶細(xì)分研究
本文選題:銀行卡 + 客戶細(xì)分; 參考:《浙江工業(yè)大學(xué)》2012年碩士論文
【摘要】:隨著信貸等傳統(tǒng)業(yè)務(wù)的利潤空間逐漸萎縮,現(xiàn)代商業(yè)銀行開始更加注重發(fā)展中間業(yè)務(wù)。銀行卡業(yè)務(wù)是中間業(yè)務(wù)的重要組成部分,它已成為各個(gè)商業(yè)銀行新的競爭焦點(diǎn),使得各銀行均將銀行卡業(yè)務(wù)逐漸向以客戶、數(shù)據(jù)、信息為中心的經(jīng)營和服務(wù)模式轉(zhuǎn)變,而這種模式的基礎(chǔ)即是客戶細(xì)分。由于數(shù)據(jù)量巨大和數(shù)據(jù)的動態(tài)性更強(qiáng),使得傳統(tǒng)的基于經(jīng)驗(yàn)或者統(tǒng)計(jì)學(xué)方法來細(xì)分客戶的方法,已經(jīng)遠(yuǎn)遠(yuǎn)不能滿足對客戶細(xì)分工作的需要,而開始采用更自動化和精確的數(shù)據(jù)挖掘方法來實(shí)現(xiàn)對卡客戶的細(xì)分和管理。 本文以溫州市郵政儲蓄銀行卡客戶細(xì)分工作為背景,針對該郵儲銀行保存的大量卡用戶數(shù)據(jù),使用數(shù)據(jù)挖掘技術(shù)來細(xì)分客戶,以幫助郵儲銀行設(shè)計(jì)相對有針對性的卡產(chǎn)品和服務(wù),創(chuàng)建以客戶為中心的營銷策略,增加客戶滿意度,增大客戶價(jià)值。 本論文的主要工作是: ①首先簡要分析了我國銀行卡業(yè)務(wù)的現(xiàn)狀和存在的問題,提出本論文要解決的主要問題是對郵儲銀行的卡客戶進(jìn)行客戶細(xì)分研究。 ②簡單介紹了客戶細(xì)分的概念和理論,以及國內(nèi)外商業(yè)銀行在客戶細(xì)分方面工作現(xiàn)狀,提出我國商業(yè)銀行大多還是使用傳統(tǒng)的細(xì)分方法,存在不足之處。 ③介紹了數(shù)據(jù)挖掘技術(shù)的概念和常用的基于數(shù)據(jù)挖掘的客戶細(xì)分技術(shù)。 ④具體闡述了筆者運(yùn)用SAS的數(shù)據(jù)挖掘工具Enterprise Miner,對溫州市郵儲銀行卡客戶數(shù)據(jù)進(jìn)行分類分析的過程,并對分析結(jié)果進(jìn)行簡單評價(jià)。 ⑤簡單總結(jié)了本論文工作的貢獻(xiàn)、局限性和對未來的展望。 本文提出使用Entcrprisc Miner運(yùn)用CHAID決策樹方法對客戶信息進(jìn)行分類分析,構(gòu)建一個(gè)分類模型,分析各個(gè)分類群眾客戶的特征,以實(shí)現(xiàn)根據(jù)未來新客戶的基本信息預(yù)測其可能的客戶類別。通過這種方法為輔助郵儲銀行經(jīng)營決策的制定,提高郵儲銀行的市場競爭力,作出了一定的貢獻(xiàn)。
[Abstract]:As the profit space of traditional business such as credit gradually shrinks, modern commercial banks begin to pay more attention to the development of intermediary business. Bank card business is an important part of intermediate business. It has become the new competition focus of each commercial bank, which makes the bank card business gradually change to the customer, data, information as the center of management and service mode. This model is based on customer segmentation. Because of the huge amount of data and the more dynamic nature of the data, the traditional method of customer segmentation based on experience or statistics can not meet the needs of customer segmentation. More automatic and accurate data mining methods are used to realize the segmentation and management of card customers. Based on the customer segmentation work of Wenzhou Postal savings Bank Card, this paper uses data mining technology to segment customers, aiming at a large number of card user data saved by the Postal savings Bank. In order to help Postal savings Bank design relatively targeted card products and services, create a customer-centered marketing strategy, increase customer satisfaction, increase customer value. The main work of this paper is as follows: 1. Firstly, the paper briefly analyzes the present situation and existing problems of bank card business in China. The main problem to be solved in this paper is to study the customer segmentation of card customers of Postal savings Bank. 2 the concept and theory of customer segmentation and the current situation of domestic and foreign commercial banks in customer segmentation are briefly introduced. It is pointed out that most commercial banks in our country still use traditional subdivision methods. This paper introduces the concept of data mining technology and the common customer segmentation technology based on data mining. 4. The author uses SAS data mining tool Enterprise Miner to analyze Wenzhou City. The process of classifying and analyzing customer data of Postal savings Bank Card, The contributions, limitations and future prospects of this paper are briefly summarized. In this paper, Entcrprisc Miner is used to classify and analyze customer information by using the chaid decision tree method, and a classification model is constructed to analyze the characteristics of each classified mass customer, so as to predict the possible customer categories according to the basic information of new customers in the future. This method can help the Postal savings Bank to make operational decisions and improve the market competitiveness of the Postal savings Bank.
【學(xué)位授予單位】:浙江工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TP311.13;F830.49
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙連寶;數(shù)據(jù)挖掘在銀行業(yè)中的應(yīng)用[J];北方經(jīng)濟(jì);2005年12期
2 朱晶;李石君;;基于數(shù)據(jù)挖掘的金融數(shù)據(jù)分析[J];電腦知識與技術(shù);2010年01期
3 王煒;;銀行卡業(yè)務(wù)數(shù)據(jù)挖掘應(yīng)用[J];福建電腦;2007年06期
4 郭崇慧,陸玉昌;預(yù)測型數(shù)據(jù)挖掘中的優(yōu)化方法[J];工程數(shù)學(xué)學(xué)報(bào);2005年01期
5 蔣纓,強(qiáng)海濤;數(shù)據(jù)挖掘在商業(yè)銀行中的應(yīng)用趨勢分析[J];甘肅社會科學(xué);2003年05期
6 李興國,于海峰,金芳芳;基于數(shù)據(jù)挖掘的銀行業(yè)客戶關(guān)系管理體系結(jié)構(gòu)[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年07期
7 侯宇;田靜;;基于決策樹方法的數(shù)據(jù)挖掘分析[J];華南金融電腦;2009年08期
8 王越,曹長修;DM技術(shù)在信用卡管理中的應(yīng)用[J];計(jì)算機(jī)工程與應(yīng)用;2002年10期
9 唐華松,姚耀文;數(shù)據(jù)挖掘中決策樹算法的探討[J];計(jì)算機(jī)應(yīng)用研究;2001年08期
10 李欣;;商業(yè)銀行客戶細(xì)分模型的建立與應(yīng)用[J];統(tǒng)計(jì)與決策;2008年09期
,本文編號:2076268
本文鏈接:http://www.sikaile.net/guanlilunwen/huobilw/2076268.html