基于改進虛擬格網(wǎng)的機載LiDAR數(shù)據(jù)的形態(tài)學(xué)濾波
本文選題:激光測距 + 虛擬格網(wǎng); 參考:《西安電子科技大學(xué)》2014年碩士論文
【摘要】:機載LiDAR(Light Detection and Ranging,激光探測與測量)技術(shù)是一種嶄新的遙感技術(shù)。機載LiDAR融合了激光測距技術(shù)手段和測量方法,它能夠主動、快速、精確獲取地面和目標(biāo)的三維空間信息,給人們帶來了新型的觀測途徑。如何有效的把海量點云數(shù)據(jù)規(guī)則或半規(guī)則的組織起來,對后續(xù)的數(shù)字產(chǎn)品生產(chǎn)和應(yīng)用都起到關(guān)鍵作用。數(shù)據(jù)濾波DEM(Digital Elevation Model,數(shù)字高程模型)生產(chǎn)技術(shù)是已經(jīng)成為LiDAR數(shù)據(jù)處理的最基礎(chǔ)工作。本文圍繞數(shù)據(jù)濾波采用改進hash鏈表的虛擬格網(wǎng)組織方式組織機載LiDAR點云數(shù)據(jù),并在此基礎(chǔ)上改進形態(tài)學(xué)濾波方法。主要研究工作和創(chuàng)新成果如下: 1.系統(tǒng)闡述了機載LiDAR的歷史及背景,總結(jié)了國內(nèi)外的研究現(xiàn)狀,詳細(xì)分析了數(shù)據(jù)處理的難點,為后續(xù)點云數(shù)據(jù)的組織和濾波算法設(shè)計提供理論依據(jù)和數(shù)據(jù)支持。 2.介紹機載LiDAR系統(tǒng)的組成結(jié)構(gòu),各個部件獲得數(shù)據(jù),經(jīng)最終解算得到LiDAR數(shù)據(jù)。介紹機載LiDAR數(shù)據(jù)的處理流程,并結(jié)合LiDAR數(shù)據(jù)常用處理軟件TerraSolid,對每步數(shù)據(jù)處理操作和用途做了詳細(xì)的介紹。 3.總結(jié)機載LiDAR點云數(shù)據(jù)的常用組織方式,針對數(shù)據(jù)量大、數(shù)據(jù)查找頻繁地操作特點,提出一種簡單的基于hash鏈表的改進的虛擬格網(wǎng)組織方式,該組織方式采用hash鏈表原理,結(jié)合虛擬格網(wǎng)和四叉樹優(yōu)點,且具有簡單、快速的優(yōu)勢。 4.改進了基于虛擬格網(wǎng)數(shù)據(jù)組織結(jié)構(gòu)的形態(tài)學(xué)濾波算法。數(shù)組組織采用基于虛擬格網(wǎng)的數(shù)據(jù)組織方式,,避免對原始數(shù)據(jù)進行重采樣損失精度。利用最大建筑物的之間作為最大窗口的閾值條件,對前后兩次形態(tài)學(xué)開運算的結(jié)果進行判斷,提高濾波的準(zhǔn)確度,避免簡單的閾值和單一的窗口對地形數(shù)據(jù)的損失。通過實驗分析證明,算法具有很強的適應(yīng)性、準(zhǔn)確性,在城區(qū)等相對比較平坦的地形具有良好的濾波效果。
[Abstract]:Airborne LiDAR (Light Detection and angling) technology is a new remote sensing technology. Airborne LiDAR combines laser ranging technology with measurement method. It can acquire 3D spatial information of ground and target actively, quickly and accurately, which brings people a new way of observation. How to effectively organize the rules or semi-rules of massive point cloud data plays a key role in the subsequent production and application of digital products. Data filtering Dem (Digital elevation Model) production technology has become the most basic work of LiDAR data processing. In this paper, the point cloud data of airborne LiDAR are organized by virtual grid with improved hash linked list around data filtering, and the morphological filtering method is improved. The main research and innovative results are as follows: 1. In this paper, the history and background of airborne LiDAR are described systematically, the research status at home and abroad is summarized, and the difficulties of data processing are analyzed in detail, which provides theoretical basis and data support for the organization of point cloud data and the design of filtering algorithm. 2. The structure of the airborne LiDAR system is introduced. The data of each component are obtained and the LiDAR data are obtained by the final solution. This paper introduces the processing flow of airborne LiDAR data and introduces in detail the operation and usage of each step data processing with the commonly used software TerraSolid. This paper summarizes the common organization methods of airborne LiDAR point cloud data. According to the characteristics of large amount of data and frequent operation of data lookup, a simple and improved virtual grid organization method based on hash linked list is proposed, which adopts the principle of hash linked list. Combine the advantages of virtual grid and quadtree, and have the advantages of simple and fast. 4. The morphological filtering algorithm based on virtual grid data organization structure is improved. Array organization is based on virtual grid to avoid resampling and losing precision of raw data. By using the threshold condition between the maximum buildings as the maximum window, the results of the two morphological operations before and after are judged to improve the accuracy of filtering and to avoid the loss of topographic data caused by simple threshold and single window. The experimental results show that the algorithm has strong adaptability, accuracy and good filtering effect in relatively flat terrain such as urban area.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP79;TN713
【參考文獻】
相關(guān)期刊論文 前10條
1 邵春麗,胡鵬,黃承義,彭琪;DELAUNAY三角網(wǎng)的算法詳述及其應(yīng)用發(fā)展前景[J];測繪科學(xué);2004年06期
2 寧津生;王正濤;;測繪學(xué)科發(fā)展綜述[J];測繪科學(xué);2006年01期
3 劉永和;王燕平;齊永安;;一種簡單快速的Delaunay三角網(wǎng)逐塊生成算法[J];測繪科學(xué);2008年06期
4 程亮;龔健雅;韓文泉;;LiDAR與影像集成的真實感建筑物三維重建研究進展[J];測繪科學(xué);2009年01期
5 李卉;李德仁;黃先鋒;鐘成;;一種漸進加密三角網(wǎng)LIDAR點云濾波的改進算法[J];測繪科學(xué);2009年03期
6 陳剛;張芯;張明;石宏斌;;基于四叉樹的LiDAR點云數(shù)據(jù)組織研究[J];測繪通報;2008年11期
7 程亮;龔健雅;;LiDAR輔助下利用超高分辨率影像提取建筑物輪廓方法[J];測繪學(xué)報;2008年03期
8 黃先鋒;李卉;王瀟;張帆;;機載LiDAR數(shù)據(jù)濾波方法評述[J];測繪學(xué)報;2009年05期
9 張煜;竇延娟;張曉東;;機載激光雷達數(shù)據(jù)采集及數(shù)據(jù)處理[J];長江科學(xué)院院報;2010年01期
10 馬文;岳建平;曹爽;;基于影像分割技術(shù)的LIDAR數(shù)據(jù)建筑物邊緣提取[J];地理與地理信息科學(xué);2010年04期
相關(guān)博士學(xué)位論文 前3條
1 王麗英;面向航帶平差的機載LiDAR系統(tǒng)誤差處理方法研究[D];遼寧工程技術(shù)大學(xué);2011年
2 周曉明;機載激光雷達點云數(shù)據(jù)濾波算法的研究與應(yīng)用[D];解放軍信息工程大學(xué);2011年
3 姚春靜;機載LiDAR點云數(shù)據(jù)與遙感影像配準(zhǔn)的方法研究[D];武漢大學(xué);2010年
本文編號:2079423
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/2079423.html