自反饋控制摩擦阻尼器耗能性能研究
本文選題:振動(dòng)控制 + 摩擦耗能器; 參考:《濟(jì)南大學(xué)》2014年碩士論文
【摘要】:無(wú)論是機(jī)械裝備還是建筑結(jié)構(gòu),在其使用或工作過程中,振動(dòng)現(xiàn)象是不可避免的。劇烈的振動(dòng)會(huì)造成結(jié)構(gòu)性能下降甚至?xí)䥽?yán)重破壞機(jī)械結(jié)構(gòu),造成不可挽回的重大損失。為了實(shí)現(xiàn)振動(dòng)控制,通常是在機(jī)械設(shè)備或建筑結(jié)構(gòu)中安裝相應(yīng)的減振耗能裝置。本課題在前期研究中,結(jié)合庫(kù)倫摩擦理論和控制理論設(shè)計(jì)了一種自反饋控制摩擦阻尼器。新阻尼器可以實(shí)現(xiàn)阻尼力的半主動(dòng)控制,克服了一般摩擦阻尼器輸出恒定阻尼力的缺點(diǎn),不僅實(shí)現(xiàn)了阻尼力的可變、可調(diào),還能根據(jù)振源信號(hào)進(jìn)行阻尼力大小的控制,使得這種新型的阻尼器能夠更好的發(fā)揮耗能減振作用。前期研究雖然完成了對(duì)該類新型阻尼器關(guān)鍵零部件的剛度和強(qiáng)度分析,闡述了其耗能機(jī)理。但是,這種阻尼器在實(shí)際工作過程中會(huì)產(chǎn)生熱量,熱量積存在阻尼器中就會(huì)使阻尼器的一些參數(shù)發(fā)生變化,,致使阻尼器耗能性能發(fā)生波動(dòng),產(chǎn)生“溫移現(xiàn)象”。其中溫度對(duì)影響阻尼器耗能性能最關(guān)鍵因素-初始?jí)毫?的影響最為突出。而這種影響在前期研究中沒有充分考慮。因此,本文研究的重點(diǎn)就是對(duì)阻尼器溫移現(xiàn)象的產(chǎn)生及其對(duì)阻尼器耗能性能的影響進(jìn)行分析;在此基礎(chǔ)上,對(duì)原有的阻尼器進(jìn)一步改進(jìn),增設(shè)調(diào)整裝置來(lái)消除溫移對(duì)阻尼器耗能性能的影響。同時(shí),為該類阻尼器應(yīng)用于主動(dòng)控制奠定結(jié)構(gòu)基礎(chǔ)。本文的研究?jī)?nèi)容如下: 第一、基于溫度影響的阻尼器結(jié)構(gòu)改進(jìn)設(shè)計(jì)和耗能性能機(jī)理分析。根據(jù)前期研究得到的阻尼器阻尼力理論計(jì)算公式,通過Matlab編寫相應(yīng)的程序進(jìn)行數(shù)值模擬,為研究外載荷(載荷的振幅和頻率)以及溫度對(duì)阻尼器耗能性能的影響奠定基礎(chǔ)。并且繪制出在特定載荷條件下的滯回曲線,進(jìn)行分析。 第二、對(duì)在溫升影響下的阻尼器耗能性能進(jìn)行理論研究。分析溫移產(chǎn)生的機(jī)理、對(duì)阻尼器增壓氣室壓力的影響,得到溫度與油液壓力關(guān)系的理論公式。建立阻尼器的簡(jiǎn)化模型,根據(jù)熱平衡方程,對(duì)阻尼器穩(wěn)定狀態(tài)耗能性能進(jìn)行理論分析。首次定量計(jì)算了該阻尼器的生熱功率,通過計(jì)算模型各種散熱功率,進(jìn)而得到平衡時(shí)的溫度,并對(duì)影響平衡溫度的因素進(jìn)行分析。利用編寫的Matlab程序,修改相應(yīng)的參數(shù),計(jì)算出不同溫度下阻尼器的滯回特性。 第三、阻尼器耗能性能有限元仿真分析。首先對(duì)油液和增壓氣室系統(tǒng)進(jìn)行仿真分析,得到增壓氣室作用下阻尼器內(nèi)部油液壓力,為后續(xù)的流固熱耦合分析提供邊界條件;二是對(duì)阻尼器結(jié)構(gòu)工作過程中溫度變化仿真分析,得到阻尼器工作過程溫度變化規(guī)律和不同時(shí)刻的溫度;三是將時(shí)間—溫度變化結(jié)果作為邊界條件加載到油液氣室流體模型中,對(duì)在溫度的影響下油液壓力進(jìn)行仿真分析,得到溫度作用下油液壓力的變化規(guī)律;最后是把油液壓力輸出結(jié)果作為阻尼器的邊界條件,分析溫度變化對(duì)阻尼器耗能性能的影響。 第四、阻尼器耗能性能的仿真試驗(yàn)分析。對(duì)影響阻尼器耗能性能的因素設(shè)計(jì)正交表,用正交試驗(yàn)的方法分析各因素影響的顯著性。進(jìn)行單因素的試驗(yàn)分析,找到最顯著因素影響的趨勢(shì),為今后的參數(shù)優(yōu)化提供依據(jù)。
[Abstract]:The vibration phenomenon is inevitable in the process of use and work, whether mechanical equipment or building structure. Severe vibration can cause structural performance decline or even serious damage to mechanical structure, causing irreparable major loss. In order to realize vibration control, it is usually installed in mechanical equipment or construction structure. In the previous study, a self feedback control friction damper is designed in the previous study, which combines the friction theory and the control theory of Kulun. The new damper can realize the semi-active control of the damping force and overcome the disadvantages of the ordinary friction damper to output constant damping force. It not only realizes the variable damping force, but also can adjust the damping force, and can also base on the vibration. The source signal is controlled by the size of the damping force, which makes this new type of damper can play a better role in energy dissipation and vibration reduction. In the previous study, the stiffness and strength of the key parts of the new type dampers were analyzed, and the energy dissipation mechanism was expounded. However, this kind of damper will produce heat and heat product in the actual working process. In the presence of the damper, some parameters of the damper will change, which causes the energy dissipation of the damper to fluctuate and produce a "temperature shift phenomenon". The temperature has the most prominent effect on the influence of the initial pressure on the energy dissipation performance of the damper. The point is to analyze the temperature shift of the damper and its influence on the energy dissipation of the damper. On this basis, the original damper is further improved and the adjustment device is set up to eliminate the influence of temperature shift on the energy dissipation performance of the damper. At the same time, this kind of damper is applied to the active control to lay the foundation of the structure. The following is as follows:
First, the structure improvement design and the energy dissipation mechanism analysis based on the temperature influence are made. According to the theoretical formula of damping force of the dampers obtained in the previous study, the corresponding program is compiled by Matlab to simulate the effect of the external load (amplitude and frequency of load) and the influence of temperature on the energy dissipation performance of the damper. The hysteretic curve under specific load conditions is plotted and analyzed.
Second, the energy dissipation performance of the damper under the influence of temperature rise is theoretically studied. The mechanism of the temperature shift and the influence of the pressure on the pressure of the damper chamber are analyzed. The theoretical formula of the relationship between the temperature and the oil pressure is obtained. The simplified model of the damper is established and the energy dissipation performance of the damper is theoretically analyzed according to the heat balance equation. The heat generating power of the damper is calculated, and the temperature of the balance is obtained by calculating the heat dissipation of the model, and the factors that affect the balance temperature are analyzed. The Matlab program is used to modify the corresponding parameters and calculate the hysteresis characteristics of the damper at different temperatures.
Third, the finite element simulation analysis of dampers energy dissipation performance. First, the fluid and pressurized gas chamber system are simulated and analyzed. The fluid pressure inside the damper under the action of the pressurized gas chamber is obtained, and the boundary conditions are provided for the subsequent fluid solid thermal coupling analysis. The two is the simulation analysis of the temperature change in the work process of the damper, and the damper work is obtained. The change rule of process temperature and the temperature at different time; three is to load the time and temperature change as boundary condition into the fluid model of oil and gas chamber, to simulate the oil pressure under the influence of temperature, and get the change law of oil pressure under the effect of temperature; the most later is the output of oil pressure as the damper. The influence of temperature variation on the energy dissipation performance of dampers is analyzed.
Fourth, the simulation test and analysis of the energy dissipation performance of the damper. The orthogonal table is designed for the factors affecting the energy dissipation of the damper. The significance of the influence of each factor is analyzed by the orthogonal test method. The test analysis of the single factor is carried out to find the most significant factor influence trend and provide the basis for the optimization of the future parameters.
【學(xué)位授予單位】:濟(jì)南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TB535.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王建嶺,楊秀芹;氣體彈簧的彈性模量[J];平頂山工學(xué)院學(xué)報(bào);2005年02期
2 歐進(jìn)萍,吳斌;摩擦型與軟鋼屈服型耗能器的性能與減振效果的試驗(yàn)比較[J];地震工程與工程振動(dòng);1995年03期
3 孫峰,周云,俞公驊,李希平;加勁圓環(huán)耗能器性能的試驗(yàn)研究[J];地震工程與工程振動(dòng);1999年03期
4 周云,劉季;兩種摩擦耗能器的比較試驗(yàn)研究[J];地震工程與工程振動(dòng);1997年01期
5 周云,徐趙東,趙鴻鐵;粘彈性阻尼結(jié)構(gòu)的性能、分析方法及工程應(yīng)用[J];地震工程與工程振動(dòng);1998年03期
6 王社良;樊禹江;劉苗苗;;新型壓電摩擦阻尼器動(dòng)態(tài)力學(xué)性能的理論分析[J];水利與建筑工程學(xué)報(bào);2011年03期
7 邱支振;庫(kù)侖阻尼器的基本制振特性[J];華東冶金學(xué)院學(xué)報(bào);1995年04期
8 吳斌,張紀(jì)剛,歐進(jìn)萍;擬黏滯摩擦阻尼器滯回特性及支撐內(nèi)力分析[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2003年07期
9 吳斌,張紀(jì)剛,歐進(jìn)萍;Pall型摩擦阻尼器的試驗(yàn)研究與數(shù)值分析[J];建筑結(jié)構(gòu)學(xué)報(bào);2003年02期
10 漆文凱,高德平,陳偉;干摩擦阻尼及其應(yīng)用[J];理化檢驗(yàn)(物理分冊(cè));2002年04期
本文編號(hào):1969955
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/1969955.html