天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 管理論文 > 城建管理論文 >

燃煤熱電聯(lián)產(chǎn)區(qū)域供熱系統(tǒng)熱源優(yōu)化配置研究

發(fā)布時間:2019-06-26 20:57
【摘要】:近年來,區(qū)域供熱系統(tǒng)在我國供熱系統(tǒng)中所占的比例逐步提高,,同時熱電聯(lián)產(chǎn)機組作為一種主要的熱源形式在區(qū)域供熱系統(tǒng)中的應用越來越廣泛。機組設備的類型、容量和性能都在變化,但對熱電聯(lián)產(chǎn)區(qū)域供熱系統(tǒng)熱源的優(yōu)化配置、規(guī)劃設計研究存在一定的滯后,特別是熱電聯(lián)產(chǎn)區(qū)域供熱系統(tǒng)的熱化系數(shù),未能隨著熱電聯(lián)產(chǎn)機組的性能變化從理論上給出確定方法。本文針對燃煤熱電聯(lián)產(chǎn)區(qū)域供熱系統(tǒng),通過節(jié)能性和經(jīng)濟性分析,對熱電聯(lián)產(chǎn)區(qū)域供熱系統(tǒng)的最佳熱化系數(shù)與熱源優(yōu)化配置進行了研究。 首先,論文分析比較了國內(nèi)外常用的熱電聯(lián)產(chǎn)系統(tǒng)能耗評價指標,其中一次能源相對節(jié)約率和不可逆損失相對減少率這兩個指標更適于表示熱電聯(lián)產(chǎn)系統(tǒng)相對于熱電分產(chǎn)系統(tǒng)的節(jié)能效果,建議引入到我國熱電聯(lián)產(chǎn)系統(tǒng)評價指標體系中,并建立了熱電聯(lián)產(chǎn)區(qū)域供熱系統(tǒng)熱源的一次能源相對節(jié)約率和不可逆損失相對減少率計算數(shù)學模型。 第二,建立了凝汽供暖兩用型和背壓式熱電聯(lián)產(chǎn)機組的熱力系統(tǒng)模型。針對不同型號的機組,確定了熱電聯(lián)產(chǎn)機組總能耗、發(fā)電功率與機組供熱能力之間的關系。對于凝汽供暖兩用型機組,采用正交試驗設計方法對影響熱電聯(lián)產(chǎn)機組綜 4個主要參數(shù)進行了因素分析。結果表明:對綜合熱效率影響最大的因素是汽輪機進汽量和供熱抽汽量,而對最大的是供熱抽汽壓力。分別以一次能源相對節(jié)約率和不可逆損失相對減少率作為評價指標,對凝汽供暖兩用型機組的熱力特性進行分析,提出了節(jié)能最小抽汽比的概念。對于NC145、NC200和NC300機組,基于一次能源相對節(jié)約率和不可逆損失相對減少率的節(jié)能最小抽汽比在0.14~0.2之間。 第三,基于一次能源相對節(jié)約率,建立了熱電聯(lián)產(chǎn)區(qū)域供熱系統(tǒng)節(jié)能性熱化系數(shù)優(yōu)化數(shù)學模型。對于凝汽供暖兩用型機組,供暖氣象參數(shù)和區(qū)域鍋爐熱效率對最佳熱化系數(shù)的影響較大。以2臺NC300為基本熱源時,寒冷A區(qū)的節(jié)能性最佳熱化系數(shù)取值范圍為0.57~0.7,寒冷B區(qū)為0.66~0.73;嚴寒A區(qū)為0.53~0.62,嚴寒B區(qū)為0.55~0.65,嚴寒C區(qū)為0.57~0.65。區(qū)域鍋爐熱效率對最佳熱化系數(shù)的影響有限,以區(qū)域鍋爐平均熱效率70%時最佳熱化系數(shù)作為最終結果是可以接受的。對于背壓式機組,機組型號對最佳熱化系數(shù)影響不大,氣象參數(shù)的影響也不如對凝汽供暖兩用型機組那么明顯。僅有供暖熱負荷時,機組臺數(shù)對熱化系數(shù)的影響較大,機組臺數(shù)從2臺增加到4臺,最佳熱化系數(shù)也逐漸增大,從0.74~0.89變?yōu)?.84~0.94。對于B80機組,考慮了常年性熱負荷之后,寒冷地區(qū)的最佳熱化系數(shù)在[0.6,0.7]之間,且與供暖室外計算溫度高度相關,常年性熱負荷比越大,最佳熱化系數(shù)越大。嚴寒地區(qū)的最佳熱化系數(shù)在[0.5,0.65]之間,與供暖室外計算溫度及常年性熱負荷比相關性小。 第四,建立了熱電聯(lián)產(chǎn)區(qū)域供熱系統(tǒng)經(jīng)濟性熱化系數(shù)優(yōu)化數(shù)學模型。熱電聯(lián)產(chǎn)機組供熱成本分攤比是確定熱電聯(lián)產(chǎn)系統(tǒng)供熱成本的關鍵因素。在已有的分攤方法基礎上,本文提出了改進的熱電聯(lián)合法,并以該方法作為供熱成本分攤的依據(jù)。常見的熱電聯(lián)產(chǎn)區(qū)域供熱系統(tǒng)熱源中,供熱固定成本最高的是凝汽供暖兩用型機組,最低的是燃煤鍋爐;而可變成本最高的是燃煤鍋爐,最低的是背壓式機組。從經(jīng)濟性角度來看,大容量凝汽供暖兩用型機組的經(jīng)濟性優(yōu)于小容量機組,而小容量背壓式機組的經(jīng)濟性卻好于大容量背壓式機組?傮w而言,背壓式機組的經(jīng)濟性要優(yōu)于凝汽供暖兩用型機組。NC300和B80機組的經(jīng)濟性最佳熱化系數(shù)的變化范圍分別為0.65~0.86和0.57~0.8。 最后,應用上述研究成果,針對一實際熱電聯(lián)產(chǎn)區(qū)域供熱項目,對供熱系統(tǒng)能耗現(xiàn)狀進行評價,同時對供熱系統(tǒng)遠期規(guī)劃的熱源配置進行了優(yōu)化。
[Abstract]:In recent years, the proportion of the regional heating system in the heating system of our country has been gradually increased, and the application of the cogeneration unit as a main heat source in the regional heating system is becoming more and more extensive. The type, the capacity and the performance of the unit equipment are changing, but the optimization of the heat source of the heat supply system in the cogeneration area has a certain lag, in particular the thermalization coefficient of the heat supply system in the cogeneration area, The method of determining the performance of the cogeneration unit has not been given theoretically. Based on the energy-saving and economic analysis of the heat-supply system of the coal-fired cogeneration zone, the optimal heat-heating coefficient and the optimal configuration of the heat-source are studied by the energy-saving and economic analysis. First, the paper analyzes the energy consumption evaluation index of the cogeneration system, which is commonly used at home and abroad, among which, the two indexes of the relative reduction rate and the irreversible loss of the energy-saving energy are more suitable to represent the energy-saving effect of the cogeneration system with respect to the thermoelectric power distribution system. The results and suggestions are introduced in the evaluation index system of the cogeneration system of our country, and the mathematical model of the relative reduction rate and the relative reduction rate of the non-reversible loss of the heat source of the heat source of the heat supply system in the cogeneration area is established. Type II. The thermal system of the condensing and steam heating type and back pressure type cogeneration unit is established. Series model. For units of different models, the total energy consumption of the cogeneration unit, the power generation power and the heating capacity of the unit are determined. For condensing steam heating type units, the orthogonal test design method is adopted to influence the heat and power of the heat and power plant. The main parameters of the overall 4 main parameters of the production unit The results show that the most important factors to the integrated thermal efficiency are the steam inlet and the steam extraction, and the maximum is for the supply of steam. In this paper, the thermal characteristics of the condensing steam heating unit are analyzed by using the relative reduction of the relative saving rate and the irreversible loss of the condensing energy as the evaluation index, and the energy-saving minimum extraction is put forward. The concept of steam-to-gas ratio. For NC145, NC200 and NC300 units, the energy-saving minimum extraction ratio based on the relative reduction of the energy-saving rate and the irreversible loss of the primary energy is 0.14 ~ "0.2. Third, based on the relative saving rate of energy-saving energy, the energy-saving and thermalization system of the heat supply system of the cogeneration zone is established." The mathematical model of the number is optimized. The thermal efficiency of the heating and meteorological parameters and the thermal efficiency of the regional boiler is the best for the condensing and heating type units. When two NC300 is the basic heat source, the optimum temperature-saving coefficient of the cold-A zone is 0.57-0.7, the cold-B area is 0.66-0.73, the cold-A zone is 0.53-0.62, the cold-B area is 0.55-0.65, and the cold-C area is 0. 57-0.65. The effect of the thermal efficiency of the regional boiler on the optimal thermalization coefficient is limited, and the optimal thermalization coefficient is the most end when the average thermal efficiency of the regional boiler is 70%. The fruit is acceptable. For the back pressure type unit, the model of the unit has little influence on the optimal thermalization coefficient, and the influence of the meteorological parameters is not as good as the steam heating and heating. In the case of heat load only, the number of units has a large influence on the thermalization coefficient, the number of units increases from 2 to 4, and the optimum thermalization coefficient is gradually increased, from 0.74 to 0.89 to 0. 84-0.94. For B80 units, after the normal annual thermal load is considered, the optimal thermalization coefficient in the cold area is between[0.6, 0.7] and is highly correlated with the heating outdoor calculation temperature. The higher the normal annual thermal load ratio, the more The greater the thermal coefficient, the greater the optimum thermalization coefficient in the severe cold area. Fourth, the economic heat of the heat supply system of the cogeneration zone is established. The mathematical model of the optimization of the heat supply cost of the cogeneration unit. The ratio of the heat supply cost of the cogeneration unit is to determine the cogeneration system. The key factors of the cost of heat supply are as follows: on the basis of the existing apportionment method, the improved thermoelectric combination method is put forward, and the method is used as the basis of this method. according to the heat supply cost sharing basis, in the common heat supply system heat source of the cogeneration area, the heating fixed cost is the highest, the condensing steam heating type unit is the lowest, the coal-fired boiler is the lowest, and the variable cost is the highest in the coal-fired boiler, The lowest is the back pressure unit. From the economical point of view, the economy of the high-capacity condensing steam heating unit is better than that of the small-capacity unit, while the economy of the small-capacity back-pressure unit is good. In general, the economy of the back pressure unit is superior to that of the high-capacity back-pressure unit. The variation range of the optimal heat-heating coefficient of the NC300 and B80 units is 0.65-0.86, respectively. and finally, applying the research results, evaluating the current situation of the energy consumption of the heat supply system according to the heat supply project of an actual cogeneration area, and simultaneously,
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TU995

【參考文獻】

相關期刊論文 前10條

1 崔樹慶,武學素;熱電聯(lián)產(chǎn)中熱化系數(shù)的優(yōu)化[J];動力工程;1987年05期

2 馮霄,錢立倫,蔡頤年;熱電聯(lián)產(chǎn)中熱、電分攤比的合理確定[J];工程熱物理學報;1997年04期

3 王海超;焦文玲;鄒平華;;燃氣鍋爐房調峰供熱的大氣環(huán)境影響模擬[J];土木建筑與環(huán)境工程;2009年02期

4 魏豪,雷學麗,李曉宇,李繼華;國產(chǎn)200MW供熱機組供熱調峰能力的試驗研究[J];吉林電力;2004年01期

5 初立森;李敏;李海峰;;供熱機組的熱力與運行特性探討[J];吉林電力;2009年03期

6 王汝武;;城市供熱系統(tǒng)優(yōu)化設計和運行講座(三)[J];節(jié)能;1990年03期

7 張樹芳;孫科;郭江龍;常澍平;董志國;;熱電廠熱電分攤實際焓降法的新算法[J];節(jié)能技術;2012年02期

8 蔡啟林,周大勇,壽曉峰,紀烈i;熱電廠最佳供回水溫度的探討[J];煤氣與熱力;1988年04期

9 蔡啟林,王兆霖,袁小雄;熱電合產(chǎn)供熱系統(tǒng)設計參數(shù)的優(yōu)選[J];煤氣與熱力;1988年05期

10 由世俊;朱晏琳;鄭雪晶;張歡;;供熱二級網(wǎng)側設置燃氣調峰鍋爐的探討及節(jié)能分析[J];暖通空調;2007年01期

相關博士學位論文 前1條

1 張沈生;城市供熱模式評價理論方法及應用研究[D];吉林大學;2009年



本文編號:2506489

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/guanlilunwen/chengjian/2506489.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶6772e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com