巖石破裂過程的統(tǒng)計(jì)損傷模型及裂隙巖體漸進(jìn)破壞數(shù)值模擬
[Abstract]:The traditional rock mechanics is based on phenomenological theory, which can not fully explain the failure mechanism of rock, nor can it reproduce the nonlinear mechanical characteristics of rock. The finite element method, which is based on the traditional rock mechanics theory, can not reasonably simulate the progressive failure process such as crack propagation and generalized time dependent in rock. With the development of geotechnical engineering towards higher and deeper direction, the study of some new nonlinear mechanical phenomena is inevitable, and the development of rock mechanics presents unprecedented challenges. It is necessary to re-examine the constitutive relations of rocks from the point of view of meso-mechanics, fracture mechanics, damage mechanics and statistical mechanics. Based on the microscopic observation of rock, the relationship between the crack propagation length and the far field stress increment under the condition of continuous tensile loading is deduced, and the fracture probability is taken as the damage variable by introducing it into the multilevel non-equilibrium statistical theory. By unifying the mesomechanical mechanism of rock with the macroscopic damage process, the constitutive equation of rock tensile damage evolution across scales is established. Using the sliding crack model, the equivalent far-field tensile stress of wing crack propagation under compression condition is derived. The damage evolution under compression condition is unified to the tensional damage evolution equation, and the splitting failure criterion is also obtained. Then the intrinsic scale parameters of the constitutive relation and the strength and size effect law of rock material are studied. The constitutive equation obtained in this paper has the basic macroscopic mechanical characteristics of rock material. The effect of initial damage on stress-strain curve is studied. It is concluded that the generalized model is consistent with the effect of considering material initial damage on stress-strain curve. In order to establish the calculation method of progressive failure of rock, the damage evolution equation is embedded into the dispersive fracture model to establish the element failure criterion which satisfies the conservation of fracture energy. It is proved that the double scalar damage model and the single scalar damage model are equivalent in this paper, which verifies the synchronism of tensile damage and shear damage, and gives a reasonable explanation for the method of crack propagation in elastic brittle model. In order to consider the mechanical characteristics of the initial fracture, an equivalent fracture model is established, which can be used to calculate the influence of the existing joints and fractures in engineering rock mass, so as to avoid the difficulty of modeling the solid model. Finally, on the basis of the above research results, the method of measuring the equivalent mechanical parameters of jointed rock mass is established through an example, and the failure mode, strength condition and strength parameters of intermittent jointed rock mass are studied by means of loading and unloading numerical test of intermittent jointed rock mass. The results show that the equivalent mechanical parameters of engineering rock mass obtained by this method are 30 to 50 higher than those obtained by traditional method of engineering rock mass classification.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TU45
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王宇;曹強(qiáng);李曉;劉帥;余宏明;;邊坡漸進(jìn)破壞的模糊隨機(jī)可靠性研究[J];工程地質(zhì)學(xué)報(bào);2011年06期
2 鄭利濤;胡志強(qiáng);唐洪祥;;強(qiáng)間斷分析方法在土工結(jié)構(gòu)物漸進(jìn)破壞過程中的應(yīng)用[J];巖土力學(xué);2012年09期
3 劉泉聲;胡云華;劉濱;;基于試驗(yàn)的花崗巖漸進(jìn)破壞本構(gòu)模型研究[J];巖土力學(xué);2009年02期
4 凌道盛;涂福彬;卜令方;;基于黏聚區(qū)域模型的邊坡漸進(jìn)破壞過程強(qiáng)化有限元分析[J];巖土工程學(xué)報(bào);2012年08期
5 殷有泉;巖體介質(zhì)漸進(jìn)破壞的彈塑性本構(gòu)關(guān)系[J];固體力學(xué)學(xué)報(bào);1981年01期
6 艾南山 ,苗天德;山體穩(wěn)定性的一種新判據(jù)——以東鄉(xiāng)石拉泉山為例[J];蘭州大學(xué)學(xué)報(bào);1986年01期
7 謝志民,苗常青,杜星文;受軸向撞擊復(fù)合材料管的漸進(jìn)破壞[J];應(yīng)用力學(xué)學(xué)報(bào);2000年01期
8 李世海;周東;;地質(zhì)體漸進(jìn)破壞面的計(jì)算模型與剪切面破壞準(zhǔn)則[J];巖石力學(xué)與工程學(xué)報(bào);2013年S2期
9 唐洪祥;李錫夔;;土工結(jié)構(gòu)物漸進(jìn)破壞過程Cosserat連續(xù)體有限元分析[J];大連理工大學(xué)學(xué)報(bào);2010年03期
10 張宏,殷有泉;巖體漸進(jìn)破壞有限元分析及NOLM程序[J];固體力學(xué)學(xué)報(bào);1983年02期
相關(guān)會(huì)議論文 前5條
1 劉信聲;李朝弟;劉小琴;;巖土類結(jié)構(gòu)的漸進(jìn)破壞特性[A];第二屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(下)[C];1993年
2 彭守拙;梁毅;;花崗巖的漸進(jìn)破壞和數(shù)值模擬[A];第三屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(下)[C];1994年
3 楊慶;欒茂田;焦建奎;;邊坡漸進(jìn)破壞可靠性分析及其應(yīng)用[A];中國(guó)土木工程學(xué)會(huì)第八屆土力學(xué)及巖土工程學(xué)術(shù)會(huì)議論文集[C];1999年
4 陳國(guó)周;賈金青;;錨桿與土體界面漸進(jìn)破壞的解析解[A];第九屆全國(guó)巖土力學(xué)數(shù)值分析與解析方法討論會(huì)論文集[C];2007年
5 張玉武;廖國(guó)華;;邊坡的一種漸進(jìn)破壞[A];邊坡穩(wěn)定的巖石力學(xué)分析學(xué)術(shù)會(huì)議論文集(上集)[C];1987年
相關(guān)碩士學(xué)位論文 前5條
1 吳曉明;均質(zhì)土坡漸進(jìn)破壞可靠性分析[D];浙江大學(xué);2006年
2 王永剛;雙層反翹滑坡漸進(jìn)破壞力學(xué)模型及時(shí)效變形分析[D];中國(guó)科學(xué)院研究生院(武漢巖土力學(xué)研究所);2006年
3 王宇;滑坡漸進(jìn)破壞模糊隨機(jī)可靠性研究[D];中國(guó)地質(zhì)大學(xué);2012年
4 鄭娟;土質(zhì)邊坡漸進(jìn)破壞計(jì)算機(jī)仿真及模型試驗(yàn)研究[D];華東交通大學(xué);2009年
5 韋會(huì)強(qiáng);擋土墻土體漸進(jìn)破壞試驗(yàn)研究與數(shù)值模擬[D];同濟(jì)大學(xué);2007年
,本文編號(hào):2381614
本文鏈接:http://www.sikaile.net/guanlilunwen/chengjian/2381614.html