天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 管理論文 > 城建管理論文 >

基于改進(jìn)粒子群算法的城市給水管網(wǎng)優(yōu)化設(shè)計(jì)

發(fā)布時(shí)間:2018-01-28 05:13

  本文關(guān)鍵詞: 粒子群混合優(yōu)化算法 給水管網(wǎng) 動(dòng)態(tài)調(diào)整 自適應(yīng)懲罰函數(shù) 決策系統(tǒng) 出處:《北京工業(yè)大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文


【摘要】:城市給水管網(wǎng)系統(tǒng)是城市建設(shè)和工業(yè)生產(chǎn)的重要基礎(chǔ)設(shè)施,,隨著城市規(guī)模的擴(kuò)大,管網(wǎng)系統(tǒng)的規(guī)模也逐漸呈現(xiàn)出復(fù)雜化、大型化的發(fā)展趨勢(shì),管網(wǎng)系統(tǒng)的建設(shè)資金投入也隨之增加。一般給水管網(wǎng)的投資占到工程總投資的四分之三,通過(guò)優(yōu)化計(jì)算,可以節(jié)省工程投資的5%—10%,具有巨大的經(jīng)濟(jì)效益和現(xiàn)實(shí)意義。如何對(duì)給水管網(wǎng)進(jìn)行科學(xué)的優(yōu)化設(shè)計(jì)已經(jīng)成為國(guó)內(nèi)外專家關(guān)注的問(wèn)題。 粒子群優(yōu)化算法機(jī)制簡(jiǎn)單、可調(diào)參數(shù)少、易于實(shí)現(xiàn),具有較強(qiáng)的全局收斂能力,不需要借助問(wèn)題的特征信息等特點(diǎn),因此文中采用粒子群優(yōu)化算法對(duì)城市給水管網(wǎng)進(jìn)行優(yōu)化設(shè)計(jì)。論文的主要研究工作如下: 1.針對(duì)標(biāo)準(zhǔn)粒子群優(yōu)化算法在優(yōu)化給水管網(wǎng)問(wèn)題中存在易陷入局部最小難以尋求最優(yōu)解的問(wèn)題,文中在分析粒子群優(yōu)化算法的慣性權(quán)重對(duì)算法性能影響的基礎(chǔ)上,提出了一種基于粒子聚集程度動(dòng)態(tài)調(diào)整慣性權(quán)重的策略,該調(diào)整策略利用種群在進(jìn)化過(guò)程中粒子分布信息動(dòng)態(tài)改變慣性權(quán)值,充分平衡了算法在優(yōu)化過(guò)程中全局探索能力和局部開(kāi)發(fā)能力,提高了算法的尋優(yōu)精度。利用4個(gè)典型的基準(zhǔn)測(cè)試函數(shù)對(duì)改進(jìn)的算法進(jìn)行測(cè)試。測(cè)試結(jié)果表明,改進(jìn)的算法與傳統(tǒng)的ω調(diào)整策略相比更能夠適應(yīng)粒子動(dòng)態(tài)搜索的性能。 2.為了解決給水管網(wǎng)優(yōu)化設(shè)計(jì)這樣一類(lèi)帶有約束條件的、高度非線性的離散組合優(yōu)化問(wèn)題,提出一種改進(jìn)型粒子群混合優(yōu)化算法。該算法在動(dòng)態(tài)調(diào)整慣性權(quán)重的改進(jìn)基礎(chǔ)之上,將極值優(yōu)化算法引入到改進(jìn)粒子群算法中,利用極值優(yōu)化算法精細(xì)的局部搜索能力,增加種群多樣性并使算法有效地跳出局優(yōu)。根據(jù)給水管網(wǎng)優(yōu)化設(shè)計(jì)問(wèn)題的最優(yōu)解分布的特點(diǎn),采用自適應(yīng)懲罰函數(shù)法處理管網(wǎng)優(yōu)化的約束條件,提高算法的搜索效率。將改進(jìn)型粒子群混合優(yōu)化算法應(yīng)用到給水管網(wǎng)優(yōu)化設(shè)計(jì)中,仿真結(jié)果表明,算法有較好收斂速度的同時(shí)還有效地避免了陷入局部最優(yōu),并得到了更優(yōu)的工程造價(jià)。 3.開(kāi)發(fā)了單機(jī)版給水管網(wǎng)智能計(jì)算決策系統(tǒng)軟件。該系統(tǒng)軟件使用VS2010和MATLAB作為開(kāi)發(fā)工具,嵌入多種智能優(yōu)化算法及新提出的改進(jìn)算法,對(duì)給水管網(wǎng)進(jìn)行優(yōu)化計(jì)算,迅速、準(zhǔn)確地得到管網(wǎng)總造價(jià)和最優(yōu)管徑的結(jié)果,實(shí)現(xiàn)在管線的鋪設(shè)階段根據(jù)實(shí)際情況提供優(yōu)化決策的功能,通過(guò)設(shè)置管網(wǎng)運(yùn)行、造價(jià)的不同參數(shù),分析對(duì)比數(shù)據(jù)結(jié)果為決策者提供更優(yōu)的選擇。通過(guò)C#設(shè)計(jì)界面,使系統(tǒng)軟件的操作具有直觀性和可視性。 論文針對(duì)粒子群優(yōu)化算法在解決給水管網(wǎng)優(yōu)化問(wèn)題所存在的問(wèn)題,對(duì)算法進(jìn)行了改進(jìn)研究,提出一種改進(jìn)型粒子群混合優(yōu)化算法并將其應(yīng)用在城市給水管網(wǎng)優(yōu)化設(shè)計(jì)中。在滿足供水要求的前提下,取得了較優(yōu)的結(jié)果。并利用Visual Studio2010和MATLAB等工具開(kāi)發(fā)了給水管網(wǎng)智能計(jì)算決策系統(tǒng),為城市規(guī)劃設(shè)計(jì)、建設(shè)等提供基礎(chǔ)數(shù)據(jù)支撐。
[Abstract]:Urban water supply network system is an important infrastructure for urban construction and industrial production. With the expansion of the scale of the city, the scale of the pipe network system also gradually presents a complex, large-scale development trend. The investment of water supply network accounts for 3/4 of the total investment of the project. Through the optimization calculation, it can save 5- 10% of the project investment. It is of great economic benefit and practical significance. How to optimize the water distribution network scientifically has become a problem that experts at home and abroad pay close attention to. Particle swarm optimization (PSO) has the advantages of simple mechanism, few adjustable parameters, easy implementation, strong global convergence ability and no need for the characteristic information of the problem. Therefore, particle swarm optimization algorithm is used to optimize the design of urban water distribution network. The main research work of this paper is as follows: 1. Aiming at the problem that the standard particle swarm optimization algorithm is easy to fall into the local minimum, it is difficult to find the optimal solution in the optimization of water supply network. On the basis of analyzing the influence of inertia weight of particle swarm optimization algorithm on the performance of the algorithm, a strategy of dynamically adjusting inertia weight based on particle aggregation degree is proposed in this paper. The adjustment strategy uses the information of particle distribution to change the inertia weight dynamically in the process of population evolution, and balances the global exploration ability and local development ability of the algorithm in the process of optimization. The improved algorithm is tested by using four typical benchmark functions. The test results show that the proposed algorithm can be used to improve the accuracy of the algorithm. 4 typical benchmark functions are used to test the improved algorithm. Compared with the traditional 蠅 adjustment strategy, the improved algorithm is more suitable for particle dynamic search. 2. In order to solve this kind of highly nonlinear discrete combinatorial optimization problem with constraints, the optimal design of water supply network is solved. An improved particle swarm optimization (PSO) hybrid optimization algorithm is proposed, which is based on the dynamic adjustment of inertia weight, and the extremum optimization algorithm is introduced into the improved PSO algorithm. By using the fine local search ability of the extremum optimization algorithm, the population diversity is increased and the algorithm effectively jumps out. According to the characteristics of the optimal solution distribution of the water supply network optimization design problem. Adaptive penalty function method is used to deal with the constraint conditions of pipe network optimization, and the search efficiency of the algorithm is improved. The improved particle swarm optimization algorithm is applied to the optimization design of water supply network. The algorithm has better convergence speed and effectively avoids falling into local optimum and gets better project cost. 3. The software of intelligent calculation and decision system for water supply network is developed, which uses VS2010 and MATLAB as developing tools. A variety of intelligent optimization algorithms and new improved algorithms are embedded to optimize the water supply network. The results of the total cost and the optimal diameter of the pipe network are obtained quickly and accurately. In the pipeline laying stage according to the actual situation to provide the function of optimal decision-making, through setting up the pipeline network operation, the cost of different parameters. Through the C # design interface, the operation of the system software is intuitive and visible. Aiming at the problem of particle swarm optimization algorithm in solving the problem of water supply network optimization, the improvement of the algorithm is studied in this paper. An improved particle swarm optimization algorithm is proposed and applied to the optimal design of urban water supply network. The intelligent calculation decision system of water supply network is developed by using Visual Studio2010 and MATLAB tools, which can be used for urban planning and design. Construction to provide basic data support.
【學(xué)位授予單位】:北京工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TU991.33;TP18

【參考文獻(xiàn)】

相關(guān)期刊論文 前5條

1 張頂學(xué);關(guān)治洪;劉新芝;;一種動(dòng)態(tài)改變慣性權(quán)重的自適應(yīng)粒子群算法[J];控制與決策;2008年11期

2 李祥立 ,鄒平華;基于模擬退火算法的供熱管網(wǎng)優(yōu)化設(shè)計(jì)[J];暖通空調(diào);2005年04期

3 喬俊飛;佟磊;潘廣源;;基于改進(jìn)蟻群算法的Hanoi給水管網(wǎng)優(yōu)化設(shè)計(jì)[J];控制工程;2013年03期

4 朱家松,龔健雅,鄭皓;遺傳算法在管網(wǎng)優(yōu)化設(shè)計(jì)中的應(yīng)用[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2003年03期

5 杜繼永;張鳳鳴;李建文;楊驥;;一種具有初始化功能的自適應(yīng)慣性權(quán)重粒子群算法[J];信息與控制;2012年02期



本文編號(hào):1469864

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/guanlilunwen/chengjian/1469864.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶23a03***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com