天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

并聯(lián)混合動(dòng)力汽車能量控制策略研究

發(fā)布時(shí)間:2018-11-19 14:38
【摘要】:隨著世界社會(huì)經(jīng)濟(jì)的高速發(fā)展,能源危機(jī)和環(huán)境污染問題日益凸顯。并聯(lián)式混合動(dòng)力汽車因具有環(huán)保、節(jié)能和技術(shù)相對成熟等優(yōu)點(diǎn)而備受關(guān)注。并聯(lián)混合動(dòng)力汽車的能量控制策略的優(yōu)劣是影響汽車能耗的重要因素,因此在滿足汽車動(dòng)力性的前提下,優(yōu)化并聯(lián)式混合動(dòng)力汽車能量控制策略對控制能源危機(jī)和實(shí)現(xiàn)環(huán)境的可持續(xù)發(fā)展具有非常重要的現(xiàn)實(shí)意義。 論文以并聯(lián)混合動(dòng)力汽車能量控制系統(tǒng)為研究對象,對發(fā)動(dòng)機(jī)轉(zhuǎn)矩和電機(jī)轉(zhuǎn)矩的分配問題進(jìn)行了深入研究。在分析了并聯(lián)混合動(dòng)力汽車的驅(qū)動(dòng)系統(tǒng)結(jié)構(gòu)和結(jié)合方式的基礎(chǔ)上,建立了發(fā)動(dòng)機(jī)數(shù)學(xué)模型、電機(jī)數(shù)學(xué)模型、蓄電池?cái)?shù)學(xué)模型、車輪數(shù)學(xué)模型和傳動(dòng)系動(dòng)力學(xué)方程,并構(gòu)建了能量控制策略的優(yōu)化數(shù)學(xué)模型。因并聯(lián)混合動(dòng)力汽車能量控制系統(tǒng)具有動(dòng)態(tài)非線性的特點(diǎn),論文采用模糊神經(jīng)網(wǎng)絡(luò)算法對發(fā)動(dòng)機(jī)轉(zhuǎn)矩和電機(jī)轉(zhuǎn)矩進(jìn)行優(yōu)化分配,分別設(shè)計(jì)了基于模糊邏輯算法的能量控制策略和基于模糊神經(jīng)網(wǎng)絡(luò)算法的能量控制策略,為仿真平臺(tái)提供了理論基礎(chǔ)。 在模糊神經(jīng)網(wǎng)絡(luò)能量控制策略中,根據(jù)并聯(lián)混合動(dòng)力汽車控制策略的優(yōu)化數(shù)學(xué)模型,采用補(bǔ)償神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),構(gòu)建由輸入層、隱含層和輸出層組成的前向神經(jīng)網(wǎng)絡(luò),使網(wǎng)絡(luò)的輸入層與模糊邏輯算法的模糊化過程對應(yīng),網(wǎng)絡(luò)的隱含層與模糊推理過程對應(yīng),網(wǎng)絡(luò)的輸出層與解模糊過程對應(yīng),為了解決神經(jīng)網(wǎng)絡(luò)節(jié)點(diǎn)與模糊邏輯輸入輸出接口統(tǒng)一的問題,通過量化公式對輸入輸出變量進(jìn)行量化處理,進(jìn)而利用神經(jīng)網(wǎng)絡(luò)自學(xué)習(xí)和自適應(yīng)的能力,自動(dòng)生成模糊規(guī)則和隸屬函數(shù),并不斷優(yōu)化神經(jīng)網(wǎng)絡(luò)輸入輸出隸屬函數(shù)的中心和寬度。為了提高系統(tǒng)精度,加快收斂速度,神經(jīng)網(wǎng)絡(luò)采用動(dòng)態(tài)調(diào)整步長補(bǔ)償梯度下降的學(xué)習(xí)算法對能量控制策略進(jìn)行優(yōu)化。 以豐田普銳斯轎車為例,在ADVISOR2002軟件環(huán)境下,建立了整車的后向仿真模型,其中包括發(fā)動(dòng)機(jī)、電機(jī)、蓄電池、傳動(dòng)系和汽車行駛動(dòng)力學(xué)模型,為整車控制策略研究和開發(fā)提供了必要的仿真平臺(tái),并基于此仿真平臺(tái),在典型的NEDC循環(huán)工況下,對采用模糊邏輯能量控制策略和采用模糊神經(jīng)網(wǎng)絡(luò)能量控制策略的控制系統(tǒng)進(jìn)行仿真,仿真結(jié)果驗(yàn)證了模糊神經(jīng)網(wǎng)絡(luò)能量控制策略的有效性。采用模糊神經(jīng)網(wǎng)絡(luò)能量控制策略,,能夠同時(shí)保證發(fā)動(dòng)機(jī)和電機(jī)工作在高效區(qū)域,從而提高了整車燃油經(jīng)濟(jì)性和排放性。論文對模糊神經(jīng)網(wǎng)絡(luò)能量控制策略的研究,對我國自主研發(fā)新型節(jié)能環(huán)保汽車,提高混合動(dòng)力汽車能量控制系統(tǒng)設(shè)計(jì)水平,構(gòu)建自主知識產(chǎn)權(quán)的汽車電子開發(fā)平臺(tái)具有重要意義
[Abstract]:With the rapid development of world economy, energy crisis and environmental pollution have become increasingly prominent. Parallel hybrid vehicles (HEVs) have attracted much attention because of their advantages of environmental protection, energy saving and relatively mature technology. The energy control strategy of the parallel hybrid electric vehicle is an important factor that affects the energy consumption of the vehicle. Therefore, under the premise of satisfying the power performance of the vehicle, Optimizing the energy control strategy of parallel hybrid electric vehicle (HEV) is of great practical significance in controlling the energy crisis and realizing the sustainable development of the environment. In this paper, the energy control system of parallel hybrid electric vehicle is taken as the research object, and the distribution of engine torque and motor torque is studied deeply. On the basis of analyzing the driving system structure and combination mode of parallel hybrid electric vehicle, the mathematical model of engine, motor, battery, wheel and dynamic equation of transmission system are established. The optimal mathematical model of energy control strategy is constructed. Because the energy control system of parallel hybrid electric vehicle has the characteristics of dynamic nonlinearity, the fuzzy neural network algorithm is used to optimize the distribution of engine torque and motor torque. The energy control strategy based on fuzzy logic algorithm and the energy control strategy based on fuzzy neural network algorithm are designed respectively, which provides the theoretical basis for the simulation platform. In the energy control strategy of fuzzy neural network, according to the optimal mathematical model of the control strategy of parallel hybrid electric vehicle, a forward neural network composed of input layer, hidden layer and output layer is constructed by using compensatory neural network structure. The input layer of the network corresponds to the fuzzy process of the fuzzy logic algorithm, the hidden layer of the network corresponds to the fuzzy reasoning process, and the output layer of the network corresponds to the process of resolving the fuzzy logic. In order to solve the problem of the unity of the interface between the neural network node and the fuzzy logic input and output, the input and output variables are quantized by the quantization formula, and then the self-learning and adaptive ability of the neural network is utilized. The fuzzy rules and membership functions are generated automatically, and the center and width of the input and output membership functions of the neural network are optimized continuously. In order to improve the accuracy of the system and speed up the convergence, the neural network optimizes the energy control strategy by using the learning algorithm of dynamically adjusting the step size to compensate for the gradient descent. Taking the Toyota Prius car as an example, the backward simulation model of the whole vehicle is established under the environment of ADVISOR2002 software, which includes engine, motor, battery, transmission system and vehicle driving dynamics model. It provides a necessary simulation platform for the research and development of vehicle control strategy, and based on this simulation platform, under typical NEDC cycle conditions, The fuzzy logic energy control strategy and the fuzzy neural network energy control strategy are simulated. The simulation results verify the effectiveness of the fuzzy neural network energy control strategy. The fuzzy neural network (FNN) energy control strategy can ensure that the engine and motor can work in the high efficiency area at the same time, thus improving the fuel economy and emission performance of the whole vehicle. The research on the fuzzy neural network energy control strategy is of great significance to the independent research and development of new energy saving and environmental protection vehicles in China, to improve the design level of hybrid electric vehicle energy control system, and to construct the automobile electronic development platform with independent intellectual property rights.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:U469.7

【參考文獻(xiàn)】

相關(guān)期刊論文 前7條

1 楊書強(qiáng);牛一川;;并聯(lián)式混合動(dòng)力汽車能量管理策略的控制仿真[J];機(jī)械與電子;2011年11期

2 周志堅(jiān),毛宗源;一種最優(yōu)模糊神經(jīng)網(wǎng)絡(luò)控制器[J];控制與決策;2000年03期

3 紀(jì)峻嶺;齊曉杰;朱榮福;;豐田混合動(dòng)力汽車驅(qū)動(dòng)系統(tǒng)結(jié)構(gòu)分析及性能研究[J];內(nèi)燃機(jī);2007年06期

4 黃振躍;張好明;孫玉坤;;新型并聯(lián)混合動(dòng)力汽車驅(qū)動(dòng)系統(tǒng)研究[J];微電機(jī);2008年05期

5 鄧亞東;陳田俊;蘇楚奇;;并聯(lián)混合動(dòng)力驅(qū)動(dòng)系統(tǒng)模糊控制策略研究[J];武漢理工大學(xué)學(xué)報(bào);2007年06期

6 錢立軍,襲著永,金德全;混合動(dòng)力電動(dòng)汽車控制策略的設(shè)計(jì)與仿真[J];系統(tǒng)仿真學(xué)報(bào);2005年03期

7 彭濤,陳全世;并聯(lián)混合動(dòng)力電動(dòng)汽車的模糊能量管理策略[J];中國機(jī)械工程;2003年09期

相關(guān)博士學(xué)位論文 前2條

1 申彩英;串聯(lián)混合動(dòng)力汽車能量優(yōu)化管理策略研究[D];天津大學(xué);2010年

2 吳劍;并聯(lián)式混合動(dòng)力汽車能量管理策略優(yōu)化研究[D];山東大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 田彤;混合動(dòng)力重型商用車部件選型及性能仿真[D];武漢理工大學(xué);2011年

2 王聰慧;混合動(dòng)力電動(dòng)汽車能量管理系統(tǒng)模糊控制策略[D];河南科技大學(xué);2011年

3 田甜;單軸并聯(lián)式混合動(dòng)力汽車能量管理策略的研究[D];南京林業(yè)大學(xué);2011年

4 胡仕泳;基于模糊神經(jīng)網(wǎng)絡(luò)的立輥傳動(dòng)智能控制系統(tǒng)的設(shè)計(jì)[D];武漢科技大學(xué);2005年

5 劉勝鐵;并聯(lián)混合動(dòng)力客車模糊控制策略的研究[D];吉林大學(xué);2006年

6 明紹民;并聯(lián)混合動(dòng)力汽車模糊邏輯控制策略的研究[D];吉林大學(xué);2007年

7 劉宏偉;基于單片機(jī)的模糊控制方法及應(yīng)用研究[D];武漢理工大學(xué);2007年

8 劉文杰;混聯(lián)型混合動(dòng)力汽車控制策略優(yōu)化研究[D];重慶大學(xué);2007年

9 倪穎倩;電動(dòng)汽車關(guān)鍵技術(shù)[D];南京理工大學(xué);2008年

10 朱傳高;并聯(lián)混合動(dòng)力汽車遺傳模糊控制策略的優(yōu)化研究[D];吉林大學(xué);2009年



本文編號:2342636

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/falvlunwen/zhishichanquanfa/2342636.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9ce70***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com