機(jī)電無(wú)級(jí)傳動(dòng)混合動(dòng)力驅(qū)動(dòng)系統(tǒng)建模仿真及臺(tái)架試驗(yàn)
本文選題:機(jī)電無(wú)級(jí)傳動(dòng) + 混雜系統(tǒng)理論 ; 參考:《華南理工大學(xué)》2014年碩士論文
【摘要】:機(jī)電無(wú)級(jí)傳動(dòng)混合動(dòng)力驅(qū)動(dòng)系統(tǒng)(簡(jiǎn)稱(chēng)機(jī)電無(wú)級(jí)傳動(dòng)系統(tǒng),下同)兼顧機(jī)械和電氣端口,在進(jìn)行能量轉(zhuǎn)換、耦合及分離時(shí)無(wú)需離合器與額外的起動(dòng)電動(dòng)機(jī),具備在較寬速比范圍內(nèi)實(shí)現(xiàn)無(wú)級(jí)變速傳動(dòng)、使發(fā)動(dòng)機(jī)在變負(fù)載情況下均能運(yùn)行于最佳燃油經(jīng)濟(jì)線(xiàn)上,在減少燃油消耗、提升效率、優(yōu)化發(fā)動(dòng)機(jī)性能等方面具有很大優(yōu)勢(shì)而成為研究的重點(diǎn)。 本文以具有自主知識(shí)產(chǎn)權(quán)的基于對(duì)轉(zhuǎn)雙轉(zhuǎn)子電機(jī)和雙排行星齒輪動(dòng)力耦合機(jī)構(gòu)為主要構(gòu)件的機(jī)電無(wú)級(jí)傳動(dòng)系統(tǒng)為研究對(duì)象,綜合運(yùn)用理論推導(dǎo)分析、建模仿真研究及臺(tái)架試驗(yàn)驗(yàn)證等手段對(duì)其傳動(dòng)特性、燃油經(jīng)濟(jì)性和模式切換平順性等方面進(jìn)行系統(tǒng)的研究,主要工作包括: (1)對(duì)機(jī)電無(wú)級(jí)傳動(dòng)系統(tǒng)的結(jié)構(gòu)機(jī)理進(jìn)行詳細(xì)的分析,利用模擬杠桿法建立系統(tǒng)的轉(zhuǎn)速轉(zhuǎn)矩傳動(dòng)特性,根據(jù)設(shè)計(jì)初衷、分析其工作模式及能量傳遞路徑; (2)引入混雜系統(tǒng)理論來(lái)描述兼有連續(xù)變量動(dòng)態(tài)系統(tǒng)和離散變量動(dòng)態(tài)系統(tǒng)的機(jī)電無(wú)級(jí)傳動(dòng)系統(tǒng),利用Matlab/Simulink/Stateflow仿真平臺(tái),建立其基于混雜系統(tǒng)理論的轉(zhuǎn)矩控制策略,建立駕駛員模型、車(chē)輛動(dòng)力學(xué)模型、動(dòng)力源、蓄電池、雙排行星齒輪動(dòng)力耦合機(jī)構(gòu)等關(guān)鍵零部件模型,并以UDDS、NEDC和1015循環(huán)工況為例,進(jìn)行能量管理仿真分析,研究基于混雜系統(tǒng)理論的轉(zhuǎn)矩控制策略,研究機(jī)電無(wú)級(jí)傳動(dòng)系統(tǒng)整車(chē)油經(jīng)濟(jì)性; (3)針對(duì)動(dòng)力傳遞平穩(wěn)的需要,分析機(jī)電無(wú)級(jí)傳動(dòng)系統(tǒng)不同動(dòng)力源的動(dòng)態(tài)響應(yīng)特性,以降低機(jī)電無(wú)級(jí)傳動(dòng)系統(tǒng)在模式切換過(guò)程中由于發(fā)動(dòng)機(jī)和雙轉(zhuǎn)子電機(jī)不同動(dòng)態(tài)響應(yīng)特性引起的沖擊度為目標(biāo),利用發(fā)動(dòng)機(jī)試驗(yàn)數(shù)據(jù),建立發(fā)動(dòng)機(jī)轉(zhuǎn)矩估計(jì)的BP神經(jīng)網(wǎng)絡(luò)模型;诳焖倌M杠桿法,建立雙排行星齒輪機(jī)構(gòu)動(dòng)態(tài)特性模型,,基于臺(tái)架試驗(yàn)特性,建立雙轉(zhuǎn)子電機(jī)和制動(dòng)器傳遞函數(shù)動(dòng)態(tài)特性模型,根據(jù)系統(tǒng)結(jié)構(gòu)特性、提出“轉(zhuǎn)矩分配+發(fā)動(dòng)機(jī)轉(zhuǎn)矩估計(jì)+電動(dòng)機(jī)轉(zhuǎn)矩補(bǔ)償+補(bǔ)償系數(shù)修正”的動(dòng)態(tài)協(xié)調(diào)控制策略,并分別以由純電動(dòng)模式切換到混合驅(qū)動(dòng)模式H2的定工況和全工況為例進(jìn)行仿真; (4)基于模塊化設(shè)計(jì)思想,搭建機(jī)電無(wú)級(jí)傳動(dòng)系統(tǒng)總成試驗(yàn)臺(tái)架,詳細(xì)闡述該總成試驗(yàn)臺(tái)架的基本原理,并在前述理論的指導(dǎo)下,測(cè)量雙轉(zhuǎn)子電機(jī)的基本電氣性能,驗(yàn)證機(jī)電無(wú)級(jí)傳動(dòng)系統(tǒng)的工作模式并測(cè)試機(jī)電無(wú)級(jí)傳動(dòng)系統(tǒng)在不同能量傳遞路徑的效率。
[Abstract]:Electromechanical stepless drive hybrid drive system (mechatronic stepless drive system, hereinafter referred to as mechatronic stepless drive system) takes account of both mechanical and electrical ports and requires no clutch and additional starting motor for energy conversion, coupling and separation,It has the ability to realize stepless variable speed transmission in a wide range of speed ratio, so that the engine can run on the best fuel economy line under variable load, which can reduce fuel consumption and improve efficiency.Optimization of engine performance and other aspects have great advantages and become the focus of research.In this paper, the electromechanical stepless transmission system with independent intellectual property rights, which is based on the coupling mechanism of dual rotor motor and double-row planetary gear, is taken as the research object, and the theoretical derivation and analysis are used synthetically.Modeling, simulation, bench test and other means to study its transmission characteristics, fuel economy and mode switching ride, the main work includes:1) the structure mechanism of electromechanical stepless transmission system is analyzed in detail. The rotational speed and torque transmission characteristics of the system are established by using the simulation lever method. According to the original intention of the design, the working mode and the energy transfer path of the system are analyzed.The hybrid system theory is introduced to describe the electromechanical stepless transmission system with continuous variable dynamic system and discrete variable dynamic system. The torque control strategy based on hybrid system theory is established by using Matlab/Simulink/Stateflow simulation platform, and the driver model is established.Vehicle dynamics model, power source, battery, double row planetary gear power coupling mechanism and other key parts model, and taking Uddes NEDC and 1015 cycle conditions as examples, the energy management simulation analysis is carried out.The torque control strategy based on hybrid system theory and the fuel economy of electromechanical stepless drive system are studied.In order to meet the need of steady power transmission, the dynamic response characteristics of different power sources of electromechanical stepless transmission system are analyzed.In order to reduce the impact caused by different dynamic response characteristics of engine and double-rotor motor in mode switching process of electromechanical stepless transmission system, a BP neural network model for engine torque estimation is established by using engine test data.Based on the fast simulation lever method, the dynamic characteristic model of double row planetary gear mechanism is established, and the dynamic characteristic model of transfer function of double rotor motor and brake is established based on bench test characteristics.The dynamic coordinated control strategy of torque estimation motor compensation compensation coefficient correction for torque distribution engine is put forward, and the simulation results of H _ 2 mode and H _ 2 from pure electric mode to hybrid drive mode are given respectively.Based on the modular design idea, the test stand of electromechanical stepless transmission system is built, and the basic principle of the test stand is expounded in detail, and the basic electrical performance of the double rotor motor is measured under the guidance of the above theory.The working mode of the electromechanical stepless transmission system is verified and the efficiency of the electromechanical stepless transmission system in different energy transfer paths is tested.
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:U463.2;U467
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄧志君;羅玉濤;周斯加;趙克剛;;新型車(chē)用對(duì)轉(zhuǎn)雙轉(zhuǎn)子電機(jī)的研究[J];電氣傳動(dòng);2007年07期
2 資新運(yùn);杜常清;張?jiān)鼋?顏伏伍;;用于混合動(dòng)力控制的汽油機(jī)動(dòng)態(tài)轉(zhuǎn)矩建模仿真[J];公路交通科技;2008年10期
3 羅玉濤;周斯加;趙克剛;黃向東;;電磁耦合無(wú)級(jí)變速傳動(dòng)系統(tǒng)[J];機(jī)械工程學(xué)報(bào);2006年08期
4 趙治國(guó);何寧;朱陽(yáng);余卓平;;四輪驅(qū)動(dòng)混合動(dòng)力轎車(chē)驅(qū)動(dòng)模式切換控制[J];機(jī)械工程學(xué)報(bào);2011年04期
5 鹿笑冬,歐陽(yáng)明高,白露;用于發(fā)動(dòng)機(jī)控制模型的基于循環(huán)的平均值離散建模方法[J];內(nèi)燃機(jī)學(xué)報(bào);2001年01期
6 李宏才;閆清東;王偉達(dá);明波;陳杰翔;;雙模式機(jī)電復(fù)合傳動(dòng)方案設(shè)計(jì)與特性對(duì)比[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2012年02期
7 倪成群;張幽彤;趙強(qiáng);BOUKEHILI Adel;;混合動(dòng)力離合器結(jié)合過(guò)程的動(dòng)態(tài)轉(zhuǎn)矩控制策略[J];機(jī)械工程學(xué)報(bào);2013年04期
8 閆曉磊;鐘勇;鐘志華;;HEV傳動(dòng)系統(tǒng)動(dòng)力平順切換最優(yōu)控制的研究[J];汽車(chē)工程;2008年04期
9 戴一凡;羅禹貢;李克強(qiáng);任勇;周安健;段志輝;嚴(yán)欽山;;單電機(jī)強(qiáng)混合動(dòng)力電動(dòng)車(chē)輛的動(dòng)態(tài)協(xié)調(diào)控制[J];汽車(chē)工程;2011年12期
10 彭標(biāo)興;發(fā)動(dòng)機(jī)起動(dòng)過(guò)程及影響低溫起動(dòng)的因素[J];汽車(chē)技術(shù);1995年09期
相關(guān)博士學(xué)位論文 前2條
1 吳鐵洲;HEV鋰離子電池組管理關(guān)鍵技術(shù)研究[D];華中科技大學(xué);2010年
2 于永濤;混聯(lián)式混合動(dòng)力車(chē)輛優(yōu)化設(shè)計(jì)與控制[D];吉林大學(xué);2010年
本文編號(hào):1749143
本文鏈接:http://www.sikaile.net/falvlunwen/zhishichanquanfa/1749143.html