六自由度關節(jié)型機器人參數(shù)標定方法與實驗研究
發(fā)布時間:2018-01-28 06:04
本文關鍵詞: 六自由度關節(jié)型機器人 靜態(tài)位姿精度 機器人標定 幾何參數(shù) 機器人剛度 最小二乘算法 蒙特卡羅方法 出處:《華中科技大學》2013年博士論文 論文類型:學位論文
【摘要】:隨著生產(chǎn)力的提高和科學技術的迅速發(fā)展,制造業(yè)對六自由度關節(jié)型工業(yè)機器人自動化柔性生產(chǎn)的性能要求越來越高,研發(fā)和建立具有自主知識產(chǎn)權的工業(yè)機器人關鍵參數(shù)標定與實驗方法,已成為國內(nèi)主要行業(yè)對制造裝備的基本需求。 本文以六自由度關節(jié)型機器人對研究對象,以提升其靜態(tài)位姿精度性能為目標,系統(tǒng)的對機器人參數(shù)標定方法和實驗原理進行了研究。從機器人位姿精度的評估與測量方法出發(fā),根據(jù)對機器人末端執(zhí)行器位姿誤差來源的分析,分別建立機器人運動學誤差模型和剛度模型,并對機器人幾何參數(shù)和非幾何參數(shù)對位姿精度的影響進行建模和仿真。同時,基于參數(shù)優(yōu)化求解方法,搭建機器人關鍵參數(shù)誤差辨識的實驗平臺,對機器人末端執(zhí)行器位姿誤差進行補償。根據(jù)企業(yè)需求并以機器人標定的實驗原理為基礎,搭建工業(yè)機器人性能檢測的實驗平臺,為自主研發(fā)六自由度關節(jié)型機器人的性能檢測提供有效的測量和評估手段。主要內(nèi)容如下: 首先,根據(jù)工業(yè)機器人標定方法和原理,對六自由度關節(jié)型機器人靜態(tài)位姿精度的評估和測量方法進行描述與分析。針對國際標準ISO9283中對位姿精度的檢測規(guī)范和要求,采用激光跟蹤測量系統(tǒng)搭建位姿精度檢測實驗平臺。同時,設計了一款用于位姿精度柔性測量的末端執(zhí)行器,補充了標準內(nèi)提供的檢測手段,并通過蒙特卡羅方法對其測量精度進行了誤差的數(shù)值分析與仿真。 針對六自由度關節(jié)型機器人運動學特性,分別建立了機器人修正D-H參數(shù)(MD-H)和指數(shù)積(POE)運動學誤差模型。以企業(yè)自主研發(fā)15kg噴涂機器人為測量對象,采用激光跟蹤測量系統(tǒng)對機器人幾何參數(shù)標定實驗平臺進行搭建。通過迭代最小二乘優(yōu)化求解方法對幾何參數(shù)誤差進行辨識與補償,并對機器人標定前后位姿性能進行分析與評估。 針對六自由度關節(jié)型機器人柔順特性,對機器人剛度模型進行分析,并以剛體運動學和基于關節(jié)柔性旋轉變形假設的剛度模型為基礎,提出了基于關節(jié)六維柔性變形假設的機器人剛度模型。以KUKA KR16L機器人為研究對象,搭建柔性旋轉關節(jié)剛度辨識實驗平臺。采用蒙特卡羅方法對機器人幾何參數(shù)誤差進行數(shù)值仿真,評估其對關節(jié)旋轉剛度辨識的影響。通過對位置精度進行補償與測量對關節(jié)剛度辨識結果進行校核與評估。同時,以處于維護狀態(tài)下15kg噴涂機器人為研究對象,搭建六維關節(jié)剛度辨識實驗平臺,采用迭代加權最小二乘優(yōu)化求解方法對其進行辨識。通過位姿精度補償和測量與對關節(jié)剛度機械補償前后末端執(zhí)行器振動特性的評估對六維關節(jié)剛度進行校核。 針對自主研發(fā)15kg噴涂機器人輕質(zhì)化制造的特點,利用夾具原理對其連桿剛度進行辨識與評估。建立連桿-夾具系統(tǒng)剛度與連桿剛度之間耦合關系的數(shù)學模型并通過激光跟蹤測量系統(tǒng)和加載系統(tǒng)搭建辨識實驗平臺。采用非線性最小二乘優(yōu)化求解方法對15kg噴涂機器人腕部第4,5和6連桿的剛度矩陣進行辨識。同時,根據(jù)機器人運動學原理,建立連桿剛度對機器人末端執(zhí)行器柔順性能影響的評估方法。采用蒙特卡羅方法和枚舉法對連桿剛度影響因子在機器人工作空間內(nèi)的分布特性進行分析,并針對指定離線編程噴涂軌跡設計的合理性進行了數(shù)值仿真與評估。 最后,根據(jù)企業(yè)對工業(yè)機器人性能檢測和評估的需求,針對國際標準ISO9283中重要檢測項目位姿準確度、位姿重復性與速度特性的測量規(guī)范,利用激光跟蹤儀測量系統(tǒng)搭建相應性能檢測實驗平臺,對柔性生產(chǎn)線中典型六自由度關節(jié)型機器人:15kg噴涂機器人、昆山一號和KUKAKR16L進行測試,并對其測試結果進行數(shù)值評估和比較。
[Abstract]:With the rapid development of productivity and science and technology, the performance requirements of manufacturing automation with six degrees of freedom industrial robot flexible production is more and more high, R & D and the establishment of industrial robot with independent intellectual property rights of the key parameters calibration and experimental method, has become the basic demand for major domestic industry of manufacturing equipment.
In this paper, six DOF articulated robot for research object, in order to improve the performance of the static pose accuracy as the goal, system of robot calibration principle and experimental method were studied. From the perspective of evaluation and measurement method of robot pose accuracy, according to the analysis of end effector pose error sources on the robot end, respectively. To establish the kinematics error model and stiffness model, modeling and simulation is performed and the effects of geometrical parameters of the robot and non geometric parameters on the pose accuracy. At the same time, the parameter optimization method based on the experimental platform to build robot off key parameter identification error, to compensate the end effector of a robot pose error. The experimental principle in robot calibration according to the needs of enterprises and based on the experimental platform to build the industrial robot performance testing, performance for the self-developed six DOF articulated robot The test provides an effective measure and evaluation method. The main contents are as follows:
First of all, according to the industrial robot calibration method and principle, static pose accuracy evaluation and measurement of the six DOF articulated robot. According to the description and Analysis on the pose accuracy in the detection of ISO9283 international standard specifications and requirements, the laser tracking measurement system built pose accuracy detection experiment platform. At the same time, a for pose accuracy measurement of flexible end effector design, complementary detection means provided in the standard, and through the Monte Carlo method on the measurement accuracy of the numerical analysis and Simulation of error.
For the six DOF articulated robot kinematics, respectively set up robot modified D-H parameters (MD-H) and exponential product (POE) kinematics error model. With the enterprise independent research and development of 15kg spraying robot as the measuring object, the robot geometric parameters calibration experiment platform to build the laser tracking measurement system. The identification and compensation of geometric parameters the error of optimal solution by iterative least square method, and the calibration of robot pose before and after the performance analysis and evaluation.
For the six DOF articulated robot compliant characteristics of robot stiffness model is analyzed, and the rigid body kinematics and stiffness model assumes joint flexible rotation and deformation based on the proposed joint stiffness model of six dimensional flexible deformation assumption. The KUKA based robot KR16L robot as the research object, build flexible rotating joint stiffness the degree of identification experiment platform. By using the Monte Carlo method for numerical simulation of robot geometric parameter error, assess the effect of joint rotation stiffness identification. Based on position precision compensation and measurement verification and assessment of the joint stiffness identification results. At the same time, in the maintenance of state 15kg spraying robot as the research object, build six dimensional joint stiffness identification experiment platform, using the iterative weighted least squares optimization method to identify the pose accuracy. Through measurement and compensation The evaluation of the vibration characteristics of the terminal actuator before and after the mechanical compensation of the joint stiffness was checked for the stiffness of the six dimension joint.
According to the characteristics of light manufacturing robot independent research and development of 15kg coating, using the principle of the connecting rod fixture stiffness identification and evaluation. To establish linkage fixture stiffness mathematical model and the linkage between the stiffness of the coupling between the laser tracking and measuring system and the loading system to build experimental platform for identification. By using nonlinear least squares optimization method of identification the stiffness matrix of 15kg robot wrist 4,5 and 6 bar. At the same time, according to the robot kinematics principle, establish linkage stiffness of compliant robot execution performance evaluation method. By using the Monte Carlo method and enumeration method to analyze the influence of connecting stiffness factor distribution characteristics in the robot in the working space, and for the the specified trajectory design of off-line programming spraying the rationality of the numerical simulation and evaluation.
Finally, according to the business needs of the industrial robot performance testing and evaluation, the important items of international standards ISO9283 pose accuracy measurement standard pose repeatability and speed characteristics, build the experimental platform to detect corresponding performance using laser tracker system, the flexible production line in a typical six DOF articulated robot: 15kg spraying robot, Kunshan 1 and KUKAKR16L were tested, and the test results are evaluated and compared numerically.
【學位授予單位】:華中科技大學
【學位級別】:博士
【學位授予年份】:2013
【分類號】:TP242
【參考文獻】
相關期刊論文 前5條
1 王世軍,黃玉美,王凱;柔性機械臂關節(jié)剛度的一種間接測量方法[J];機床與液壓;2004年08期
2 李定坤;葉聲華;任永杰;王一;;機器人定位精度標定技術的研究[J];計量學報;2007年03期
3 劉成良,張凱,曹其新,付莊,殷躍紅;機器人奇異形位分析及協(xié)調(diào)控制方法[J];上海交通大學學報;2002年08期
4 葉聲華;王一;任永杰;李定坤;;基于激光跟蹤儀的機器人運動學參數(shù)標定方法[J];天津大學學報;2007年02期
5 蔡鶴皋,張超群,吳偉國;機器人實際幾何參數(shù)識別與仿真[J];中國機械工程;1998年10期
,本文編號:1469984
本文鏈接:http://www.sikaile.net/falvlunwen/zhishichanquanfa/1469984.html
最近更新
教材專著