基于三維斜截面圖像重建技術(shù)進(jìn)行頭顱CT同一性認(rèn)定的研究
本文選題:法醫(yī)放射學(xué) + 斷層解剖學(xué)。 參考:《復(fù)旦大學(xué)》2010年碩士論文
【摘要】:研究目的 探索運(yùn)用三維斜截面圖像重建技術(shù)和斷層解剖學(xué)知識(shí)相結(jié)合的方法研究MSCT數(shù)據(jù)集,再現(xiàn)任意CT截面的方位和層面,為不同時(shí)間、不同設(shè)備頭顱CT圖像的形態(tài)學(xué)比對(duì)提供一種有效的技術(shù)手段。 研究方法 26例臨床并人不同批次的CT掃描數(shù)據(jù),以層厚10mm者為“原始組”,以層厚0.625mm者為“事后組”。對(duì)“事后組”及其他層厚為0.625mm的100例臨床病人CT數(shù)據(jù)進(jìn)行顱骨的三維重建以測(cè)量顱長(zhǎng),分別選擇與“事后組”具有相同性別、顱長(zhǎng)最接近者26例,設(shè)為“對(duì)照組”。將三組數(shù)據(jù)導(dǎo)入圖像處理軟件,分別觀察斷層影像解剖結(jié)構(gòu),尋找骨性標(biāo)志點(diǎn)。參照“原始組”層面,使用軟件中的ObliqueSlice模塊對(duì)“事后組”、“對(duì)照組”數(shù)據(jù)進(jìn)行方位和層面的重建,使用"fit to points"模塊和‘'setplane"命令進(jìn)行平面校正,使再現(xiàn)截面與“原始組”截面基本吻合。最后分別使用二維切面圖像對(duì)齊和變換編輯器圖像對(duì)齊的方法對(duì)比對(duì)圖像進(jìn)行疊加,進(jìn)行同一性認(rèn)定。導(dǎo)入“事后組”或“對(duì)照組”數(shù)據(jù),參照“原始組”層面,定位相應(yīng)骨性標(biāo)志,并創(chuàng)建界標(biāo),使用剛性變換模塊將“事后組”或“對(duì)照組”MSCT數(shù)據(jù)配準(zhǔn)到“原始組”數(shù)據(jù)中,進(jìn)行三維體繪制,并與“原始組”二維截面進(jìn)行疊加比對(duì)。 研究結(jié)果 在三維重建下進(jìn)行最大顱長(zhǎng)(g-op)測(cè)量,“對(duì)照組”和“事后組”之間顱長(zhǎng)差值為0~0.11cm,平均值為0.0381±0.03359cm。“事后組”MSCT數(shù)據(jù)集在ObliqueSlice模塊下,觀察顱內(nèi)結(jié)構(gòu)參照物隨層面改變而變化,其解剖結(jié)構(gòu)可以與“原始組”分別對(duì)應(yīng)標(biāo)識(shí)。判斷中心層面和旋轉(zhuǎn)軸方向,可基本模擬“原始組”方位和層面!皩(duì)照組”數(shù)據(jù)集在ObliqueSlice模塊下,其解剖結(jié)構(gòu)亦可以與“原始組”對(duì)應(yīng)標(biāo)識(shí),但經(jīng)過中心層面和旋轉(zhuǎn)軸方向多次調(diào)整后,與“原始組”方位和層面的擬合度仍比較低。 在“事后組”MSCT數(shù)據(jù)集基本模擬“原始組”方位和層面后,使用"fit to points"模塊和"setplane"命令進(jìn)行平面校正,利用“原始組”截面中三處以上解剖細(xì)節(jié)確定新截面,使再現(xiàn)截面與“原始組”截面相吻合。而“對(duì)照組”數(shù)據(jù)集重建截面無(wú)校正意義,難以同時(shí)再現(xiàn)“原始組”截面多數(shù)顱內(nèi)結(jié)構(gòu)參照物。 定位“原始組”截面和“事后組”MSCT數(shù)據(jù)集重建截面為堆疊圖像切片文件格式,使用二維切面圖像對(duì)齊可基本疊加,但比對(duì)效果不佳,難以區(qū)分特征的吻合情況。而在變換編輯器圖像對(duì)齊下,使用不同的繪圖編輯器模式,圖像差別區(qū)分明顯,能實(shí)現(xiàn)有效比對(duì)。 經(jīng)過三維圖像數(shù)據(jù)集的配準(zhǔn)后,“原始組”二維截面可以與“事后組”MSCT三維體繪制在同一空間下進(jìn)行立體比對(duì),“原始組”截面的外形輪廓、顴弓的邊緣、下頜骨、鼻中隔、以及枕骨均能與“事后組”MSCT三維體繪制吻合。當(dāng)“原始組”截面用線型編輯器繪制,經(jīng)Alpha模式實(shí)現(xiàn)透明化時(shí),則比對(duì)效果明顯。 結(jié)論 基于三維斜截面圖像重建技術(shù),個(gè)體頭顱MSCT數(shù)據(jù)集可以再現(xiàn)不同批次掃描的CT截面的方位和層面,重建的截面與原CT圖像可以有效地疊加比對(duì),其中在變換編輯器圖像對(duì)齊下,,使用不同的繪圖編輯器模式,或使用三維圖像數(shù)據(jù)集配準(zhǔn),圖像比對(duì)效果較好,可以作為基于CT圖像同一性認(rèn)定的一種方法。 研究目的 使用計(jì)算機(jī)圖像后處理技術(shù)重建頭顱CT的共同平面,探索運(yùn)用頭顱CT圖像的多項(xiàng)解剖特征指標(biāo),結(jié)合相同個(gè)體兩次各項(xiàng)指標(biāo)測(cè)量差值與不同個(gè)體各項(xiàng)指標(biāo)測(cè)量差值,進(jìn)行回歸分析,探尋建立一種多元的基于頭顱CT進(jìn)行同一性認(rèn)定的識(shí)別指標(biāo)與方法。 研究方法 首先對(duì)“事后組”和“對(duì)照組”MSCT數(shù)據(jù)集進(jìn)行重建以模擬“原始組”的截而方位和層面。在蝶竇平面等層面設(shè)置骨性標(biāo)志點(diǎn),確定參數(shù)并進(jìn)行測(cè)量。計(jì)算各項(xiàng)指標(biāo)“事后組”和“對(duì)照組”’與“原始組”的差值,進(jìn)行統(tǒng)計(jì)描述。 設(shè)“事后組”和“原始組”的差值為協(xié)變量X,相應(yīng)因變量Y設(shè)為O。設(shè)“對(duì)照組”和“原始組”的差值為斜變量X,相應(yīng)因變量Y設(shè)為1。運(yùn)用二元Logistic回歸的強(qiáng)迫引入法,根據(jù)P值和得分值篩選指標(biāo)。將選得指標(biāo)同時(shí)輸入,運(yùn)用二元Logistic回歸的向后步進(jìn)法進(jìn)行回歸分析。 研究結(jié)果 根據(jù)各層面骨性結(jié)構(gòu),并參考以往CT測(cè)量研究,在蝶竇等五個(gè)層面設(shè)置34個(gè)骨性標(biāo)志點(diǎn),本次研究確定頭顱CT16項(xiàng)參數(shù)進(jìn)行測(cè)量。部分結(jié)果如下 三組間平均值和標(biāo)準(zhǔn)差無(wú)明顯差別。事后組、對(duì)照組數(shù)據(jù)分別和原始組數(shù)據(jù)相減后,事后組、原始組數(shù)值差明顯小于對(duì)照組和原始組數(shù)值差 運(yùn)用強(qiáng)迫引入法二元Logistic回歸,建立頭顱CT同一性認(rèn)定一元方程16個(gè),各指標(biāo)進(jìn)行個(gè)體識(shí)別的準(zhǔn)確率在65.4%至90.4%,其中運(yùn)用上頜竇寬、顴弓間距進(jìn)行個(gè)體識(shí)別正確率較高,達(dá)90.4%,其余各項(xiàng)指標(biāo)中,顳骨巖部角、額竇寬徑、額竇平面顱寬等準(zhǔn)確率也在80%以上,有檢驗(yàn)意義。運(yùn)用向后步進(jìn)法進(jìn)行回歸分析,獲得以顴弓間距、乙狀竇間距、蝶骨大翼角、額竇平面顱寬的四元方程,Y=X3×89.716+X4×21.186+X9×3.185+X16×26.174-53.098,可以使錯(cuò)誤率趨于0,效果最好,其OR值為1.1489732385186304E23,有實(shí)踐價(jià)值,可用于頭顱CT圖像的同一性認(rèn)定。 結(jié)論 MSCT數(shù)據(jù)集重建“原始組”CT體位后,可以提供精確測(cè)量的客觀數(shù)據(jù),相同個(gè)體兩次各項(xiàng)指標(biāo)測(cè)量差值較小,而不同個(gè)體各項(xiàng)指標(biāo)測(cè)量差值較大。經(jīng)二元Logistic回歸分析,獲得以顴弓間距、乙狀竇間距、蝶骨大翼角、額竇平面顱寬的四元方程,準(zhǔn)確率高,并可以提供比較客觀的出錯(cuò)率,符合證據(jù)規(guī)則。
[Abstract]:research objective
The method of combining 3D oblique cross section image reconstruction with sectional anatomy knowledge is used to study the MSCT data set, to reproduce the azimuth and level of arbitrary CT cross section, and to provide an effective technical means for the morphological comparison of CT images of different equipments in different time.
research method
The CT scan data of 26 patients with different batches were "primitive group" with the thickness of 10mm as the "original group", and the layer thickness 0.625mm was the "post group". The three dimensional reconstruction of the skull was carried out to measure the skull length for the "post group" and the other 100 clinical patients with the thickness of the layer of 0.625mm to measure the cranial length, and the same sex was the same as the "post group", and the cranial length was the closest. 26 cases were set up as "control group". Three groups of data were introduced into the image processing software to observe the anatomical structure of the fault images and find the bone mark points respectively. Referring to the "original group" level, the ObliqueSlice module in the software was used to reconstruct the "post group", "control group" data and to use the "fit to points" module and ''. "Setplane" commands plane correction to make the reappearance section basically coincide with the "original group" section. Finally, the image alignment is compared with the method of alignment of the two-dimensional cut surface image alignment and the transform editor. The identity of the image is compared to the same character. The "after group" or "group" data are introduced to the "original group" level. The corresponding bone marks are set up and the boundary marks are created. The "post group" or "control group" MSCT data are registered to the "original group" data using the rigid transformation module, and the 3D body is plotted and compared with the two dimensional cross section of the "original group".
Research results
The maximum cranial length (g-op) was measured by three-dimensional reconstruction. The difference of cranial length between "control group" and "ex post group" was 0 ~ 0.11cm, and the average value was 0.0381 + 0.03359cm. "ex post group" MSCT data set under the ObliqueSlice module. The changes of the intracranial structure reference were observed with the change of the level, and the anatomical structure could be compared with the "original group", respectively. It should be identified. Judging the center level and the axis of rotation, the "original group" orientation and level can be basically simulated. Under the ObliqueSlice module, the data set of the "control group" can also be identified with the "original group", but after many adjustments in the direction of the center and the axis of rotation, the fitting degree to the azimuth and level of the "original group" It's still low.
After the "post group" MSCT data set basically simulates the azimuth and level of the "original group", the "fit to points" module and the "setplane" command are used for plane correction, and the new section is determined by more than three anatomical details in the "original group" section, and the reappearance section is in accordance with the "original group" section. It is difficult to reproduce the majority of intracranial structural reference points of the original group at the same time.
The reconstruction cross section of the "original group" section and the "post group" MSCT data set is the stacked image slice file format, and the alignment can be basically superimposed by the two-dimensional slice image alignment, but the comparison effect is not good, and it is difficult to distinguish the characteristics of the anastomosis. And the image difference is distinguished by the different drawing Editor Mode under the image alignment of the transform editor. It is obvious that effective alignment can be achieved.
After the registration of 3D image data sets, the two-dimensional cross section of the "primitive group" can be compared with the "post group" MSCT three-dimensional body in the same space. The outline of the "primitive" section, the edge of the zygomatic arch, the mandible, the nasal septum, and the occipital bone are all consistent with the "post group" MSCT three-dimensional body. The cross section is drawn by linear editor and transparent by Alpha mode.
conclusion
Based on the 3D oblique cross section image reconstruction technique, the individual head MSCT data set can reproduce the azimuth and layer of the CT cross section of different batch scans. The reconstructed cross section can be effectively overlapped with the original CT image, in which the image alignment of the transform editor, using the different drawing editor mode, or the registration of the 3D image data set, is used. Image matching effect is better, which can be used as a method of image identity recognition based on CT.
research objective
Using the computer image post-processing technique to reconstruct the common plane of the head CT, explore the multiple anatomical features of the head CT image, combine the two indexes of the same individual to measure the difference between the differences of the individual and the various individual indexes, and carry on the regression analysis, and seek to establish a multiple identification recognition based on the identity of the head CT. Indicators and methods.
research method
First, the MSCT data set of "post group" and "control group" was reconstructed to simulate the position and level of the "original group". The bone markers were set on the plane of the sphenoid sinus, and the parameters were determined and measured. The difference between "after group" and "control group" and "original group" was calculated, and the statistical description was carried out.
The difference between "post group" and "original group" is a covariate X, and the corresponding dependent variable Y is set to O. to set "control group" and "original group" to be a skew variable X. The corresponding dependent variable Y is set up to 1. using the forced introduction of two element Logistic regression, selecting the index according to the P value and the score value. The selected index is input at the same time and uses two yuan Logistic back. Regression analysis is carried out by backward step method.
Research results
According to the bone structure in each level, and referring to previous CT measurements, 34 bone markers were set up at five levels, such as the sphenoid sinus. This study determined the CT16 parameters of the head.
There was no significant difference between the average and the standard deviation between the three groups. After the latter group, the data of the control group were subtracted from the original group, and the difference between the original group and the original group was significantly lower than that of the control group and the original group.
By using the two element Logistic regression of the forced introduction, the CT identity of the head was established, and the accuracy rate of individual identification was 65.4% to 90.4%. Among them, the accuracy rate of the individual identification was higher in the maxillary sinus and the zygomatic arch, and the other indexes, the angle of the temporal bone, the width of the frontal sinus and the plane cranial width of the frontal sinus, etc. The accuracy rate is more than 80%, and it has the test significance. Back step method is used to carry out regression analysis to obtain the four element equation with the distance of the zygomatic arch, the spacing of the sigmoid sinus, the great wing angle of the sphenoid bone and the plane cranial width of the frontal sinus. Y=X3 * 89.716+X4 x 21.186+X9 x 3.185+X16 x 26.174-53.098 can make the error rate be 0, the effect is best, and the OR value is 1.1489732385186304E23. The practical value can be used to identify the identity of head CT images.
conclusion
After the MSCT data set reconstructs the "original group" CT body position, the objective data of accurate measurement can be provided. The difference between the two indexes of the same individual is small and the difference between the various individual indexes is relatively large. The four element equation of the zygomatic arch spacing, the inter sigmoid distance, the great wing angle of the sphenoid bone and the plane cranial width of the frontal sinus is obtained by the two element Logistic regression analysis. High accuracy, and can provide a more objective error rate, in line with the rules of evidence.
【學(xué)位授予單位】:復(fù)旦大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2010
【分類號(hào)】:D919
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張紅霞;謝娜;鄧振華;余建群;周曉蓉;常云峰;肖家和;;頭顱放射影像資料的同一認(rèn)定[J];中國(guó)法醫(yī)學(xué)雜志;2006年04期
2 劉旭丹;張繼宗;田雪梅;江潔清;;中國(guó)漢族成人顱骨CT片同一認(rèn)定方法的研究[J];中國(guó)法醫(yī)學(xué)雜志;2008年05期
3 程亦斌,涂彬;顱腦CT及X片的同一認(rèn)定[J];法醫(yī)學(xué)雜志;1994年03期
4 高東;王慶紅;葉加慶;王虎;張召暉;鄧振華;;數(shù)字全口牙位曲面體層片的法醫(yī)學(xué)同一認(rèn)定指標(biāo)[J];法醫(yī)學(xué)雜志;2008年02期
5 羅亞平,柳佳;指紋證據(jù)地位在美國(guó)面臨的挑戰(zhàn)——多伯特審聽[J];中國(guó)人民公安大學(xué)學(xué)報(bào);2003年03期
6 呂導(dǎo)中;;談多伯特規(guī)則在形象證據(jù)鑒定中的應(yīng)用[J];公安學(xué)刊(浙江警察學(xué)院學(xué)報(bào));2008年06期
7 張惠芹;苗國(guó)華;陳敏;嚴(yán)磊;;中國(guó)漢族成人顱骨CR片同一認(rèn)定研究[J];中國(guó)人民公安大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年04期
8 譚秋豐;黃飛駿;;頭顱CT片同一認(rèn)定研究[J];證據(jù)科學(xué);2008年02期
9 譚秋豐;高淑紅;黃飛駿;;頭顱CT片性別的識(shí)別[J];法醫(yī)學(xué)雜志;2007年05期
10 鄧素平;熊平;徐大宏;;基于三維重建的個(gè)體識(shí)別[J];中國(guó)司法鑒定;2005年06期
本文編號(hào):1929937
本文鏈接:http://www.sikaile.net/falvlunwen/fanzuizhian/1929937.html