基因體外重組與在體編輯介導的腫瘤靶向光學分子成像
[Abstract]:OBJECTIVE: To construct Luc optical gene probe regulated by constitutive and tissue-specific promoters by in vitro gene recombination technology, and to compare the characteristics, differences and technical limitations of optical molecular imaging of non-targeted and targeted tumors. The system was designed and implemented to perform in vivo gene editing-mediated optical gene molecular imaging of inactivated Luc genes, which laid the foundation for the application of in vivo gene targeting imaging strategy designed in this study to target optical gene imaging under multi-target conditions in vivo. Methods: 1. Different transfection reagents and adenoviruses were used as delivery agents. Carrier, after in vitro recombinant gene P CMV-Luc was transfected into prostate cancer cells for optical imaging, to explore the imaging effect of non-targeted optical gene cells; after the transfected cells were further cultured and injected into mice subcutaneously, optical imaging was completed to evaluate the effect of in vivo cell tracing, and a prostate cancer mouse model was constructed to inject the tumor into mice. Adenoviral vector Ad.p CMV-luc was injected directly into the tumor to perform in vivo optical imaging. G method to detect the expression of Tf R after gene probe treatment and evaluate the characteristics of Tf R-mediated cell-targeted optical imaging; 3. To construct a mouse model of prostate cancer, the tissue-specific expression probe Ad.pD3-Tf R-Luc was injected into the tumor for optical imaging to analyze the fluorescence intensity and range of the image, and then to evaluate the targeting-based imaging. In vivo tumor targeting imaging with gene probes, the advantages and disadvantages of in vitro gene recombination for gene imaging were discussed by comparing the results of the first and second parts of imaging. 4. survivin promoter sequence, stop sequence (SS) sequence and G RNA (SS) sequence targeting SS sequence were designed and synthesized. CRISPR/Cas9 was constructed using plasmid PX459 and P SG-target as templates. The plasmid P U6-g RNA (SS) -pbeta actin-Cas9, P U6-g RNA (N) -pbetactin-Cas9, P U6-g RNA (N) -pbetactin-Cas9 and inactivated Luc gene plasmplasmid P CMV-Luc L-SS-SS-Luc R, P Sur-Luc L-SS-SS-Luc L-SS-SS-Luc R, P Sur-Luc L-SS-SS-SS-SS-Luc L-SS-Luc R; 5, the plasmplasmid P U6-g RNA (SS) -pbetactin-pbetactin-Cas9, P U6-g RNA (N) -pbetactin-pbetactin-Cas9, P U6-p U6-g RNA (N) -Cells and 293T cells, proceeding Results: 1. Luc gene containing constitutive promoter was treated with adenovirus, Lipofectamine 2000 and PEI respectively, and the tumor cells could emit fluorescence. Adenovirus transfection was the best method for imaging. The tumor cells transfected with adenovirus vector and adenovirus vector could be traced in vivo. The tumor region showed strong fluorescence after adenovirus vector Ad.p CMV-Luc was used to infect prostate cancer implant tumor mice, and the fluorescence region showed no correlation with tumor range. 2, Ad.p DD After 3-Tf R-Luc was transfected into different cells, only prostate cancer cells emitted fluorescence, while normal cells and other tumor cells showed no fluorescence. WB results showed that only prostate cancer cells showed Tf R protein overexpression. Ad.p DD3-Tf R-Luc-mediated in vivo optical imaging showed that only tumor sites emitted fluorescence in mice, while the surrounding tissues and the whole body emitted fluorescence. No fluorescence was detected in other organs, and the tumor boundary was clearly displayed. The fluorescence range was consistent with the tumor growth. 3. The designed plasmids of CRISPR/Cas9 vector p U6-g RNA (SS) -pBeactin-Cas9 and Luc-like gene vector p CMV-Luc L-SS-Luc R and P Sur-Luc L-SS-Luc R were successfully constructed by sequencing. After co-transfection of P CMV-Luc L-SS-Luc R plasmid and P CMV-Luc L-SS-Luc R plasmid regulated by tissue-specific promoter, 293T and PC-3 cells showed fluorescence and good imaging effect. After co-transfection of P Sur-Luc L-SS-Luc R plasmid regulated by P U6-g RNA (SS) -pbeta actin-Cas9 plasmid and tissue-specific promoter, PC-3 cells showed fluorescence. Both liposome and cationic polymer can achieve Luc gene imaging of tumor cells, and adenovirus vectors have higher transfection efficiency at the cellular level. At the same time, optical gene imaging mediated by adenovirus can obtain better in vivo optical molecular imaging results, but gene imaging regulated by constitutive promoters can not achieve tumor targeting synthesis. Therefore, the application of Luc gene probes in molecular imaging is mainly limited to the field of cell tracing and molecular biology experiments. 2. Imaging studies based on adenovirus vector Ad.p DD3-Tf R-Luc have successfully demonstrated the application of tissue-specific promoter-mediated gene imaging in cell and in vivo tumor targeting imaging. In this study, a novel optical gene imaging system based on CRISPR/Cas9 system was successfully constructed, and the normal and swelling induced by CRISPR/Cas9 in vivo gene recombination technology were realized. Targeted optical gene imaging of tumor cells will innovatively incorporate the current international frontier RISPR/Cas9 in vivo gene recombination technology into molecular imaging research, in order to achieve accurate molecular imaging in the future, detect the biological behavior of gene level and achieve in vivo, "multi-target" and "multi-factor" imaging for the purpose of new gene components. Sub imaging research provides a new technology of gene imaging based on in vivo gene editing technology.
【學位授予單位】:天津醫(yī)科大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:R730.4
【相似文獻】
相關(guān)期刊論文 前10條
1 姚戈虹;;探索科學前沿的分子成像[J];國外醫(yī)學情報;2001年07期
2 張潔;分子成像[J];中國醫(yī)學影像技術(shù);2002年07期
3 鄭偉良;腫瘤分子成像的現(xiàn)狀與前景[J];國外醫(yī)學(腫瘤學分冊);2003年04期
4 史紀文;;核分子成像技術(shù)在基因治療藥物發(fā)現(xiàn)中的應用[J];國外醫(yī)學.藥學分冊;2005年06期
5 莊天戈;;走近分子成像[J];中國醫(yī)療器械雜志;2007年02期
6 ;新型分子成像技術(shù)有助盡早檢測疾病[J];生命科學儀器;2007年11期
7 蔣星軍,任彩萍;分子成像及其應用[J];生命科學;2005年05期
8 王玲;丁志華;劉旭;;光學相干層析分子成像方法初探[J];激光生物學報;2006年05期
9 溫曉雪;王林;;分子成像技術(shù)在臨床腫瘤學中的應用[J];國外醫(yī)學.藥學分冊;2006年06期
10 張龍江,宋光義;分子成像的研究進展[J];國外醫(yī)學(臨床放射學分冊);2002年05期
相關(guān)會議論文 前10條
1 向良忠;邢達;楊思華;;光聲腫瘤分子成像[A];第七屆全國光生物學學術(shù)會議論文摘要集[C];2010年
2 肖明;James Nyagilo;Digant Dave;徐東升;;基于金納米顆粒和表面增強拉曼的分子成像技術(shù)研究[A];中國化學會第27屆學術(shù)年會第03分會場摘要集[C];2010年
3 駱清銘;張智紅;;基于分子遺傳學的腫瘤光學分子成像研究[A];第八次全國醫(yī)學遺傳學學術(shù)會議(中華醫(yī)學會2009年醫(yī)學遺傳學年會)論文摘要匯編[C];2009年
4 申寶忠;;腫瘤的分子成像與微創(chuàng)治療[A];第八屆全國腫瘤介入診療學術(shù)大會、第一屆中國抗癌協(xié)會腫瘤介入學護理專業(yè)學組會議暨國家級介入診療繼續(xù)教育學習班、腫瘤介入治療新進展研討會論文匯編[C];2007年
5 李鐵鋼;賀玖明;陳一;毛歆歆;羅志剛;張瑞萍;徐昕;唐飛;王曉浩;王明榮;陳杰;再帕爾·阿不力孜;;腫瘤組織非靶向質(zhì)譜分子成像新方法研究[A];中國化學會第十七屆全國有機分析與生物分析學術(shù)研討會論文集[C];2013年
6 駱清銘;;光學分子成像與免疫光子學[A];第八屆全國光生物學學術(shù)會議論文摘要集[C];2013年
7 駱清銘;張智紅;楊杰;陸錦玲;楊孝全;全國濤;龔輝;;面向惡性腫瘤早期診斷與藥物研發(fā)的光學分子成像[A];第十一次中國生物物理學術(shù)大會暨第九屆全國會員代表大會摘要集[C];2009年
8 駱清銘;;光學分子成像研究進展[A];中國光學學會2006年學術(shù)大會論文摘要集[C];2006年
9 再帕爾·阿不力孜;賀玖明;羅志剛;何菁菁;李鐵鋼;陳一;唐飛;王曉浩;;常壓敞開式質(zhì)譜分子成像新技術(shù)與應用進展[A];中國化學會第29屆學術(shù)年會摘要集——第03分會:分析可視化及交叉學科新方法[C];2014年
10 李偉華;;18F標記c-Met多肽的腫瘤分子成像研究[A];中華醫(yī)學會腫瘤學分會第七屆全國中青年腫瘤學術(shù)會議——中華醫(yī)學會腫瘤學分會“中華腫瘤 明日之星”大型評選活動暨中青年委員全國遴選論文匯編[C];2011年
相關(guān)重要報紙文章 前8條
1 衣曉峰 董宇翔 金鷗;分子成像技術(shù)有望早期捕捉腫瘤的“蛛絲馬跡”[N];中國醫(yī)藥報;2014年
2 衣曉峰 金鷗 記者 李麗云;分子成像技術(shù)有望超早期捕捉腫瘤的“蛛絲馬跡”[N];科技日報;2014年
3 記者 衣曉峰 特約記者 董宇翔 通訊員 金鷗;分子成像技術(shù)有助腫瘤早診早治[N];健康報;2013年
4 衣曉峰;我國惡性腫瘤的分子成像技術(shù)取得長足進展[N];中國醫(yī)藥報;2009年
5 鞠長榮 岳金鳳 記者 李麗云;哈醫(yī)大四院設(shè)計出光學分子成像設(shè)備[N];科技日報;2006年
6 衣曉峰 金鷗 記者 吳天飛;熒光探針可超早期發(fā)現(xiàn)“癌魔”[N];哈爾濱日報;2009年
7 記者 李天舒 王其玲;早期診斷惡性腫瘤或有新手段[N];健康報;2009年
8 柯晴;十種新興技術(shù)將改變世界[N];科技日報;2003年
相關(guān)博士學位論文 前4條
1 彭景;基因體外重組與在體編輯介導的腫瘤靶向光學分子成像[D];天津醫(yī)科大學;2016年
2 陳延平;用于小動物模型研究的擴散光學分子成像技術(shù)[D];華中科技大學;2006年
3 劉君;共聚焦顯微內(nèi)鏡在下消化道病變分子成像和功能成像中的應用研究[D];山東大學;2014年
4 申寶忠;GFP基因標記的移植瘤活體分子成像研究[D];天津醫(yī)科大學;2004年
相關(guān)碩士學位論文 前1條
1 劉麗娟;GEBP11短肽用于胃癌血管的共聚焦激光顯微內(nèi)鏡分子成像研究[D];第四軍醫(yī)大學;2015年
,本文編號:2199998
本文鏈接:http://www.sikaile.net/yixuelunwen/zlx/2199998.html