基于醫(yī)學CT的人體肝臟三維建模關(guān)鍵技術(shù)研究與實現(xiàn)
本文選題:肝臟灰度分離 + 腹部CT圖像。 參考:《浙江大學》2017年碩士論文
【摘要】:隨著近幾年來肝臟切除技術(shù)的飛速發(fā)展和人們生活水平的提高,個體化治療是目前醫(yī)療的發(fā)展趨勢,但是從肝臟二維醫(yī)學影像到三維模型的重建仍是一個未能完全解決的問題。圖像分割算法和三維軟件建模為解決這一問題提供了有效的途徑,其過程包括:肝臟原始數(shù)據(jù)處理、肝臟特征序列生成、肝臟模型分層重構(gòu)以及肝臟實體模型打印。本文針對人體肝臟三維建模關(guān)鍵技術(shù)展開深入研究,主要成果如下:研究了現(xiàn)有肝臟特征提取算法無法完全提取肝臟邊緣的理論根源,提出灰度分離的肝臟分割算法,加上對現(xiàn)有算法的整合和改進,成功地解決了肝臟邊緣特征提取不明顯以及無法只保留肝臟部分而不顯示其它組織的問題,從而得到了肝臟特征序列,使得肝臟三維重建過程簡化、建模時間極大的縮減以及肝臟模型準確性得到了進一步的保證。在肝臟分割算法的研究過程中,利用水平集算法提取出肝臟輪廓特征,然后通過灰度分離算法對輪廓內(nèi)的區(qū)域進行處理,最后針對區(qū)域增長算法需要手動選取種子點的弊端,對其進行了改進,從而成功用改進后的區(qū)域增長算法自動將灰度分離后的圖像變成僅含有肝臟特征而不含其它組織的圖像,使算法的效率和精度得到了提升。針對肝臟三維建模需要手動修改蒙板、耗時巨大及精度無法保證等問題,分析了傳統(tǒng)建模方法的不足,結(jié)合圖像分割算法利用處理后的肝臟特征序列進行三維重建的系統(tǒng),借助于Matlab提取并生成肝臟特征序列,導入Mimics后無需進行閾值分割和蒙板手動修改,選擇所有灰度值不為0的區(qū)域即可直接計算出三維模型,最后可將三維模型打印出肝臟實體,從而解決了肝臟三維建模的效率和精度等問題。根據(jù)上述研究內(nèi)容,以甲、乙兩病人的腹部CT圖像進行實驗驗證。首先,灰度分離算法處理效果良好,解決了肝臟邊緣特征無法自動分割及分割效果不佳的問題;其次,先生成肝臟特征序列再進行分層重構(gòu)的方法經(jīng)試驗使得肝臟三維模型重建的時間大大縮短;最后,通過肝臟實體模型3D打印完成了整個實驗最終驗證。
[Abstract]:With the rapid development of hepatectomy technology and the improvement of people's living standard in recent years, individualized treatment is the development trend of medical treatment at present, but the reconstruction from two-dimensional medical image of liver to three-dimensional model is still a problem that can not be solved completely. Image segmentation algorithm and 3D software modeling provide an effective way to solve this problem. The process includes: liver raw data processing, liver feature sequence generation, liver model hierarchical reconstruction and liver entity model printing. In this paper, the key technologies of 3D modeling of human liver are deeply studied. The main results are as follows: firstly, the theoretical roots of the existing liver feature extraction algorithms that can not completely extract the liver edges are studied, and a liver segmentation algorithm based on gray-scale separation is proposed. Combined with the integration and improvement of the existing algorithms, the problem of liver edge feature extraction is solved successfully, and the liver feature sequence is obtained, which can not only retain the liver part without displaying other tissues. The 3D liver reconstruction process is simplified, the modeling time is greatly reduced and the accuracy of the liver model is further guaranteed. In the research process of liver segmentation algorithm, the level set algorithm is used to extract the liver contour features, and then the gray level separation algorithm is used to process the region in the contour. Finally, aiming at the drawbacks of the region growth algorithm, we need to manually select the seed points. The improved region growth algorithm is successfully used to automatically transform the gray-scale image into an image with only liver features and no other tissues, which improves the efficiency and accuracy of the algorithm. In order to solve the problems such as the need to modify the mask manually, the time consuming and the precision can not be guaranteed, the deficiency of the traditional modeling method is analyzed, and the 3D reconstruction system based on the processed liver feature sequence is combined with the image segmentation algorithm. With the help of Matlab, the liver feature sequence is extracted and generated. After importing mimics, the 3D model can be directly calculated by selecting all regions with gray value not equal to zero, and the 3D model can be printed out to the liver entity without the need of threshold segmentation and manual modification of the mask. Thus, the efficiency and accuracy of liver 3D modeling are solved. According to the above study, abdominal CT images of patients A and B were used for experimental verification. Firstly, the gray level separation algorithm has good processing effect, which solves the problems that the liver edge feature can not be segmented automatically and the segmentation effect is not good. The method of stratified reconstruction of liver characteristic sequence is used to shorten the time of liver 3D model reconstruction. Finally, the whole experiment is verified by 3D printing of liver entity model.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R816.5;TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 裴曉敏;李文娜;;超像素優(yōu)化Snake模型的乳腺X線圖像胸肌分割[J];光電子·激光;2015年08期
2 吳向陽;周洋全;計忠平;;體數(shù)據(jù)壓縮技術(shù)綜述[J];計算機輔助設(shè)計與圖形學學報;2015年01期
3 周志光;劉芳;陳偉鋒;劉亞楠;林海;;一種快速的體數(shù)據(jù)特征增強可視化算法[J];計算機輔助設(shè)計與圖形學學報;2014年10期
4 朱代輝;林時苗;楊育彬;;醫(yī)學三維影像體數(shù)據(jù)閾值分割方法[J];計算機科學;2013年01期
5 蘇鑫;李素梅;劉春貴;;基于27鄰域網(wǎng)格的醫(yī)療圖像三維重建[J];光電子.激光;2012年06期
6 王磊;聶玉峰;李義強;;Delaunay四面體網(wǎng)格并行生成算法研究進展[J];計算機輔助設(shè)計與圖形學學報;2011年06期
7 葛琦;韋志輝;張建偉;馮燦;詹天明;;結(jié)合改進FCM算法的多相位CV模型[J];中國圖象圖形學報;2011年04期
8 李艷波;印桂生;張菁;朱長明;倪軍;;Delaunay四面體軟組織建模方法[J];計算機輔助設(shè)計與圖形學學報;2010年12期
9 李勇;王珂;張立保;王青竹;;多斷層融合的肺CT腫瘤靶區(qū)超分辨率重建[J];光學精密工程;2010年05期
10 曹治國;彭博;桑農(nóng);張?zhí)煨?;基于Snake模型的血管樹骨架三維重建技術(shù)[J];計算機學報;2010年03期
,本文編號:2080782
本文鏈接:http://www.sikaile.net/yixuelunwen/yundongyixue/2080782.html