基于代謝組學與微生物組學的苦蕎蛋白降脂機理的研究
[Abstract]:With the change of people's dietary structure and the aggravation of population aging, hyperlipidemia has become an important factor to induce cardiovascular and cerebrovascular diseases. The study shows that hyperlipidemia is closely related to people's diet, and it is one of the effective ways to interfere with hyperlipidemia by adjusting people's food structure. Tartary buckwheat (Tartary buckwheat), as a unique food resource in China, has been proved to have many functions such as lowering blood lipid, but the study on its mechanism is not perfect. A model of hyperlipidemic mice with streptozotocin (STZ) was established by injecting high-fat dietary streptozotocin (STZ) into mice. The blood lipid and blood glucose metabolism (total triglyceride (TG), total cholesterol (TC),) of mice treated with Tartary buckwheat protein diet was studied. Effects of high density lipoprotein (HDL-C), low density lipoprotein (LDL-C), fasting glucose (GLU) and insulin (INS), The mechanism of Tartary buckwheat protein (Tartary buckwheat protein) was studied at molecular level by combining plasma metabolomics analysis technique with intestinal microbiome technique (Illumina second generation sequencing technique). (1) the results showed that: after 6 weeks of experiment, the mechanism of Tartary buckwheat protein was analyzed. The liver index of the hyperlipidemic model group was significantly higher than that of the control group (68.5%), while the liver index of Tartary buckwheat protein group was 13.2g lower than that of the hyperlipidemic model group, and the fatty liver phenomenon was alleviated. The contents of TC and LDL-C in the high-fat model group were significantly higher than those in the control group (86.1% and 80.5%, respectively). The TC and LDL-C contents in the Tartary buckwheat protein group were significantly lower than those in the high-fat model group. It was 48.1% and 47.7% (P0.05), which improved lipid metabolism. Hyperlipidemia model mice showed impaired glucose tolerance, while Tartary buckwheat protein significantly improved glucose metabolism. At the same time, plasma inflammatory factors (lipopolysaccharide (LPS), interleukin-6 (IL-6), tumor necrosis factor a (TNF-0a) were significantly lower than those in the hyperlipidemia model group (P0.05). The results indicated that Tartary buckwheat protein could inhibit the inflammatory reaction induced by high fat diet. (2) the plasma metabolic profile of mice was obtained by UPLC-IT-TOF technique and was analyzed by HMDB,KEGG,MetPA database. It was found that the metabolic disorder induced by high fat diet in mice was mainly related to the metabolism of linoleic acid, glycerol phospholipid, sphingolipid, tryptophan, arachidonic acid and glucose. Phosphatidylcholine, linoleic acid, phosphatidic acid, lysophosphatidylcholine, glycerol, phosphatidylethanolamine, glucuronide, sphingomyelin, galactose ceramide, cerebral glucoside, glucosamine, There are 12 potential biomarkers of prostaglandin G2. (3) microflora of mouse fecal samples was studied by high-throughput sequencing (Illumina second-generation sequencing technique): Alpha diversity analysis (OTU number, Shannon index, simpson index, Chaol index, OTU number, Shannon index, simpson index, Chaol index, OTU number, Shannon index, simpson index, Chaol index). The results of ACE index showed that the species richness of the control group was significantly higher than that of the high-fat group and the Tartary buckwheat protein group, but the microbial diversity of the Tartary buckwheat protein group was significantly higher than that of the high-fat group. The results showed that Tartary buckwheat protein could significantly increase the diversity of bacteria in high-fat mice, and was closer to the control group. The results of Beta diversity analysis (PCoA analysis, LEfSe analysis) showed that there was a significant difference between the fecal samples of the three groups. The difference between the intervention group and the control group of Tartary buckwheat protein was smaller than that between the high-fat model group and the control group, which indicated that Tartary buckwheat protein could inhibit the intestinal flora disorder caused by high-fat diet. To sum up, Tartary buckwheat protein can regulate the imbalance of intestinal flora induced by high-fat diet in mice, which may be one of the important ways to interfere with hyperlipidemic blood glucose metabolism disorder.
【學位授予單位】:上海應用技術大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R151
【相似文獻】
相關期刊論文 前10條
1 王轉花,,張政,林汝法,周明德;苦蕎葉片超氧化物歧化酶的純化及性質研究[J];生物化學雜志;1994年05期
2 曹樹明;陳建雯;劉靜;胡建林;吳興德;;云南昭通苦蕎、甜蕎中氨基酸和微量元素的測定[J];中國民族民間醫(yī)藥;2010年13期
3 勾秋芬;;苦蕎中手性肌醇提取條件的研究[J];北方藥學;2014年05期
4 張政,王轉花,林汝法,金曉弟;苦蕎種子胰蛋白酶抑制劑的分離純化及部分性質研究[J];中國生物化學與分子生物學報;1999年02期
5 楊從彪;;故鄉(xiāng)的苦蕎[J];開卷有益(求醫(yī)問藥);2007年10期
6 張萬明;苦蕎菜的開發(fā)利用前景[J];四川農業(yè)科技;2004年04期
7 王廷璞;趙強;袁建軍;;響應面法優(yōu)化苦蕎殼中總黃酮的提取工藝[J];食品安全質量檢測學報;2014年06期
8 侯曉軍,暢文軍,陳立釗,張政,劉知學,王轉花;一種苦蕎主要過敏原基因cDNA的克隆及序列分析[J];中國生物化學與分子生物學報;2003年04期
9 羅光宏;祖廷勛;楊生輝;王丹霞;蒲小龍;;復方苦蕎螺旋藻片的降糖作用及安全性[J];食品與發(fā)酵工業(yè);2013年11期
10 李雙江;朱冬寅;秦東;李成磊;陳惠;吳琦;;苦蕎類黃酮3′-羥化酶基因的克隆及其冷脅迫下的組織表達[J];中草藥;2014年09期
相關會議論文 前9條
1 許明;韓亮;李艷琴;;苦蕎黃酮類化合物的穩(wěn)定性研究[A];第三屆泛環(huán)渤海(七省二市)生物化學與分子生物學會——2012年學術交流會論文集[C];2012年
2 李國柱;申慧芳;;輻射誘變選育苦蕎高黃酮突變體的研究[A];第六屆核農學青年科技工作者學術交流會暨中國核學會2011年學術年會核農學分會論文集[C];2011年
3 陳尚敇;王宗德;陳宏偉;邱業(yè)先;;添加鋅素營養(yǎng)液對培養(yǎng)苦蕎芽菜品質的影響[A];中國食品科學技術學會第五屆年會暨第四屆東西方食品業(yè)高層論壇論文摘要集[C];2007年
4 楊春;陜方;薛春生;段亞利;丁衛(wèi)英;;黑苦蕎醋軟膠囊的生產工藝及穩(wěn)定性研究[A];中國食品科學技術學會第五屆年會暨第四屆東西方食品業(yè)高層論壇論文摘要集[C];2007年
5 楊振煌;王轉花;;美拉德反應對苦蕎過敏原Fag t3免疫活性的影響[A];泛環(huán)渤海地區(qū)九省市生物化學與分子生物學會——2011年學術交流會論文集[C];2011年
6 王耀文;夏楠;杜曉磊;徐明;李艷琴;;苦蕎SRAP和SSR分子標記遺傳連鎖圖譜的構建[A];泛環(huán)渤海地區(qū)九省市生物化學與分子生物學會——2011年學術交流會論文集[C];2011年
7 李海平;李靈芝;黃中奎;邢國明;;錳、鋅對苦蕎芽菜生長和品質的影響[A];中國園藝學會第七屆青年學術討論會論文集[C];2006年
8 李海平;李靈芝;鄭少文;邢國明;;硼、鋅對苦蕎芽菜生長和品質的影響[A];中國園藝學會第十屆會員代表大會暨學術討論會論文集[C];2005年
9 劉新宇;楊足君;馮娟;鄧波;龐小峰;任正隆;;蕎麥屬植物分類的FTIR光譜研究[A];中國細胞生物學學會2005年學術大會、青年學術研討會論文摘要集[C];2005年
相關重要報紙文章 前10條
1 王鵬 劉潤合;靈丘兩企業(yè)聯手做強苦蕎業(yè)[N];大同日報;2007年
2 本報記者 蔣映春;愿涼山苦蕎茶:一路走好[N];涼山日報(漢);2006年
3 林東升;甘洛建成萬畝黑苦蕎示范基地[N];農民日報;2007年
4 記者 翟培天;涼山成為我國最大的苦蕎生產基地[N];四川科技報;2006年
5 梁新民 王虎成;三晉苦蕎研究開發(fā)達國際先進水平[N];太原日報;2006年
6 楊美;甘洛黑苦蕎一枝獨秀[N];涼山日報(漢);2007年
7 本報通訊員;環(huán)太苦蕎 “藥食同補”[N];涼山日報(漢);2008年
8 本報記者 楊揚;我州苦蕎產業(yè)又有新發(fā)展[N];涼山日報(漢);2008年
9 本報記者 王小梅;博士與苦蕎[N];貴州日報;2009年
10 本報記者 田雁 通訊員 劉潤合 王鵬 劉富強;苦蕎“種出”甜蜜生活[N];大同日報;2009年
相關博士學位論文 前5條
1 李宗杰;苦蕎蛋白的制備、生物活性鑒定及其在豬群中的應用[D];南京農業(yè)大學;2016年
2 國旭丹;苦蕎多酚及其改善內皮胰島素抵抗的研究[D];西北農林科技大學;2013年
3 董新純;UV脅迫下苦蕎類黃酮代謝及其防御機制研究[D];山東農業(yè)大學;2006年
4 智秀娟;苦蕎功能成分的研究及NIR技術在蕎麥制品防偽中的應用[D];中國農業(yè)大學;2015年
5 李成磊;苦蕎黃酮合成相關酶基因的克隆、芽期逆境脅迫中的應答及重組FtPAL和FtFLS的酶學活性研究[D];四川農業(yè)大學;2012年
相關碩士學位論文 前10條
1 劉泰驛;基于代謝組學與微生物組學的苦蕎蛋白降脂機理的研究[D];上海應用技術大學;2017年
2 楊延利;萌發(fā)對苦蕎黃酮合成的影響及萌發(fā)物抑菌、抗腫瘤活性的研究[D];上海師范大學;2011年
3 劉艷輝;苦蕎麥脫殼工藝及主要參數的優(yōu)化[D];內蒙古農業(yè)大學;2008年
4 李俊芳;苦蕎在彝族習俗中的社會功能分析[D];云南大學;2012年
5 阮池銀;云南小涼山彝族苦蕎文化的環(huán)境人類學研究[D];云南大學;2012年
6 趙琳;苦蕎萌發(fā)期生理活性及其蛋白抗菌性的研究[D];上海師范大學;2012年
7 李曉丹;苦蕎脅迫萌發(fā)及功能性成分的研究[D];江南大學;2013年
8 陳英嬌;苦蕎蛋白酶解物的制備及抗菌活性的研究[D];上海師范大學;2015年
9 丁俐;苦蕎葉茶加工過程中關鍵工藝參數及其香氣成分的研究[D];山西農業(yè)大學;2015年
10 朱智慧;施硒對苦蕎抗衰老生理和硒含量的影響[D];山西農業(yè)大學;2015年
本文編號:2413099
本文鏈接:http://www.sikaile.net/yixuelunwen/yufangyixuelunwen/2413099.html