血清淀粉樣蛋白A對VEGFR2的表達及血管新生影響的研究
本文選題:血清淀粉樣蛋白A + 血管內(nèi)皮生長因子受體2; 參考:《山東大學(xué)》2016年碩士論文
【摘要】:研究背景動脈粥樣硬化是冠狀動脈和腦血管疾病最重要的病理過程,是引發(fā)猝死的主要原因。血管新生是動脈粥樣硬化的關(guān)鍵致病因素之一。血管新生是指內(nèi)皮細胞在原有毛細血管的基礎(chǔ)上發(fā)生增殖、遷移,形成新的血管的過程。血管新生的作用有其兩面性,一方面血管新生可用于治療缺血性心臟病,這是一種在治療上需要促進的血管新生;另一方面血管新生可以加速動脈粥樣硬化中斑塊的進展,導(dǎo)致斑塊不穩(wěn)定性增加,進而發(fā)生破裂出血等,這是一種在治療上需要抑制的血管新生。根據(jù)其兩面性,可以將血管新生分為生理性和病理性兩種。探究病理性血管新生的發(fā)生機制可能為控制動脈粥樣硬化的進展提供新的靶點。血清淀粉樣蛋白A (Serum amyloid A, SAA)是一組極其保守的急性時相反應(yīng)蛋白家族,有SAA1、SAA2、SAA3及SAA4四個不同的亞型,其中SAA1是最主要的亞型。SAA主要由肝細胞合成分泌,在機體受到炎癥刺激時其血清濃度能迅速增加1000倍左右。因此,循環(huán)血液中高濃度的SAA是急性和慢性炎癥疾病的重要標志物。作為一種急性時相蛋白,SAA在多種疾病(如類風(fēng)濕關(guān)節(jié)炎、巨細胞動脈炎等)中可以促進病理性血管新生。因此,探究SAA促進血管新生的機制尤為重要。血管內(nèi)皮生長因子(Vascular endothelial growth factor, VEGF)是促進內(nèi)皮細胞血管新生的關(guān)鍵調(diào)控因子。血管內(nèi)皮生長因子受體2 (Vascular endothelial growth factor receptor 2, VEGFR2)是VEGF的受體之一,是VEGF促血管新生信號轉(zhuǎn)導(dǎo)通路的門戶。VEGF/VEGFR2信號通路活化后,能夠發(fā)揮促內(nèi)皮細胞遷移、增殖和血管新生等作用。VEGFR2主要在血管內(nèi)皮細胞上表達,但是其表達調(diào)控的機制尚待完善。以往研究顯示,SAA能夠促進人頸動脈內(nèi)皮細胞(Human carotid artery endothelial,HCtAE)中VEGF的表達;同時,SAA能夠通過激活p38 MAPK信號轉(zhuǎn)導(dǎo)通路促進內(nèi)皮細胞血管新生。因此我們推測SAA可能會影響VEGFR2的表達進而引起血管新生的變化。目前,SAA, VEGFR2與血管新生的研究存在以下亟待解決的問題:①SAA能否影響VEGFR2的表達;②SAA影響VEGFR2表達的相關(guān)信號轉(zhuǎn)導(dǎo)通路;③SAA是否能夠通過影響VEGFR2的表達引起血管新生的變化。研究目的1.探討SAA對VEGFR2表達的影響;2.探索SAA影響VEGFR2表達的相關(guān)信號轉(zhuǎn)導(dǎo)通路;3.探索SAA引起的VEGFR2表達變化在血管新生中的作用。材料方法1.培養(yǎng)人臍靜脈內(nèi)皮細胞在內(nèi)皮完全培養(yǎng)基(Endothelial complete medium,ECM)中培養(yǎng)人臍靜脈內(nèi)皮細胞(Human umbilical vein endothelial cells, HUVECs),每2-3天換液一次并置于含有5% CO2的37℃溫箱中。待細胞達到合適密度時加入SAA1或待研究信號通路的激動劑以及抑制劑刺激細胞。2.實時定量PCR (Real-time PCR)檢測利用Trizol法從HUVECs中提取出mRNA,并獲得相應(yīng)的cDNA。利用GAPDH為內(nèi)參檢測VEGFR2的mRNA表達。3.蛋白印記(Western blot)檢測收集內(nèi)皮細胞,提取蛋白,以GAPDH蛋白表達為內(nèi)參檢測VEGFR2的蛋白表達;以相應(yīng)總蛋白為內(nèi)參檢測p-ERK1/2, p-JNK及p-p38的蛋白表達。4.成管實驗(Tube formation assay)在96孔板中鋪入matrigel基質(zhì)膠,待膠凝固后每孔加入密度為2×104的細胞量,以未加任何刺激的組為對照顯微鏡下觀察各實驗組的成管情況。5.統(tǒng)計學(xué)分析所有數(shù)值均用Prism version 5和SPSS 18.0軟件進行統(tǒng)計學(xué)分析。用單因素方差分析來確定有無統(tǒng)計學(xué)意義。結(jié)果用均值±標準差來表示,P0.05代表數(shù)據(jù)間具有統(tǒng)計學(xué)差異。結(jié)果1.SAA上調(diào)HUVECs細胞中VEGFR2的表達使用不同濃度梯度(0,5,10和50μg/ml)的SAA刺激HUVECs,24小時后收集細胞,提取蛋白和mRNA。通過Western blot及Real-time PCR發(fā)現(xiàn),與對照組相比,SAA呈劑量依賴性的方式上調(diào)VEGFR2的表達(P0.01);以固定濃度的SAA (10μg/ml)刺激細胞,選擇不同時間點(0,2,3,6,12和24小時)收集細胞,提取蛋白和mRNA。通過Western blot及Real-time PCR發(fā)現(xiàn),與對照組相比,SAA呈時間依賴性的方式上調(diào)VEGFR2的表達(P0.05)。2.膜受體FPRL1能夠介導(dǎo)SAA誘導(dǎo)的VEGFR2表達上調(diào)用膜受體FPRL1的特異性抑制劑WRW4預(yù)刺激細胞,通過Western blot發(fā)現(xiàn),與單獨SAA刺激組相比,WRW4能顯著抑制SAA誘導(dǎo)的VEGFR2的表達上調(diào)(P0.01)。用FPRL1特異性的激動劑WKYMVm刺激細胞,WKYMVm組較對照組能明顯上調(diào)VEGFR2的表達(P0.01)。這一結(jié)果表明,FPRL1能夠介導(dǎo)SAA誘導(dǎo)的VEGFR2表達上調(diào)。3 HAPKs信號通路能夠介導(dǎo)SAA誘導(dǎo)的VEGFR2表達上調(diào)使用SAA刺激細胞后,通過Western blot發(fā)現(xiàn),與對照組相比,ERK1/2, JNK及p38的磷酸化水平顯著增強且在1小時達到高峰(P0.01)。然后分別使用三者特異性的抑制劑PD98059, SP600125以及SB203580刺激細胞6,12及24小時。Western blot結(jié)果顯示,加用三種抑制劑組較單獨SAA刺激組均能不同程度的降低VEGFR2的表達(P0.05)。這一結(jié)果表明,MAPKs信號通路能夠介導(dǎo)SAA誘導(dǎo)的VEGFR2表達上調(diào)。4.膜受體FPRL1能夠調(diào)控下游MAPKs信號通路的活化利用受體FPRL1的特異性抑制劑WRW4預(yù)處理細胞,Western blot結(jié)果顯示,WRW4組較單獨SAA刺激組能明顯抑制MAPKs信號通路的磷酸化(P0.05)。另外,我們用FPRL1的特異性激動劑WKYMVm處理細胞,Western blot結(jié)果顯示,與對照組相比,用WKYMVm處理細胞組能夠顯著上調(diào)MAPKs信號通路的磷酸化水平(P0.01)。這一結(jié)果表明,FPRL1作為上游信號分子能夠調(diào)控MAPKs信號通路的活化。5.SAA誘導(dǎo)的VEGR2:表達增多能夠促進內(nèi)皮細胞的血管新生利用受體VEGFR2的特異性抑制劑BIBF1120及FPRL1/MAPKs信號通路的激動劑和抑制劑刺激細胞,成管實驗結(jié)果顯示,較單獨SAA刺激組相比,加用BIBF1120, WRW4, PD98059, SP600125及SB20358均能夠顯著抑制內(nèi)皮細胞成管(P0.01)。而WKYMVm處理組較對照組相比則顯著促進內(nèi)皮細胞成管(P0.01)。這些結(jié)果證實SAA誘導(dǎo)的VEGFR2的表達及相關(guān)信號通路能夠促進內(nèi)皮細胞的血管新生。結(jié)論1.SAA能夠上調(diào)HUVECs細胞中VEGFR2的表達;2. FPRL1/MAPKs信號通路介導(dǎo)了SAA誘導(dǎo)的VEGFR2表達上調(diào);3.SAA誘導(dǎo)的VEGFR2表達上調(diào)能夠促進內(nèi)皮細胞的血管新生。
[Abstract]:Background atherosclerosis is the most important pathological process of coronary and cerebrovascular diseases. It is the main cause of sudden death. Angiogenesis is one of the key pathogenic factors of atherosclerosis. Angiogenesis is the process of proliferation, migration and formation of new blood vessels on the basis of the original capillary. On the one hand, angiogenesis can be used to treat ischemic heart disease. It is a kind of angiogenesis that needs to be promoted in treatment. On the other hand, angiogenesis can accelerate the progress of plaque in atherosclerosis, cause plaque instability to increase, break bleeding and so on. This is a kind of treatment. Angiogenesis may be divided into two physiological and pathological types based on its dual nature. Exploring the mechanism of pathological angiogenesis may provide a new target for controlling the progress of atherosclerosis. Serum amyloid A (Serum amyloid A, SAA) is an extremely conservative group of acute phase reactive protein families There are four different subtypes of SAA1, SAA2, SAA3 and SAA4, of which SAA1 is the main subtype.SAA mainly synthesized and secreted by liver cells, and the serum concentration can be increased by about 1000 times when the body is stimulated by inflammation. Therefore, the high concentration of SAA in the circulating blood is an important marker of acute and slow inflammatory diseases. Phase protein, SAA can promote pathological angiogenesis in a variety of diseases, such as rheumatoid arthritis, giant cell arteritis and so on. Therefore, it is particularly important to explore the mechanism of SAA to promote angiogenesis. Vascular endothelial growth factor (Vascular endothelial growth factor, VEGF) is a key regulator of endothelial cell angiogenesis. Growth factor receptor 2 (Vascular endothelial growth factor receptor 2, VEGFR2) is one of the receptors of VEGF. It is the activation of the portal.VEGF/VEGFR2 signaling pathway of angiogenesis pathway of VEGF promoting angiogenesis. It can express endothelial cell migration, proliferation and angiogenesis, but it is mainly expressed on vascular endothelial cells by.VEGFR2, but it is mainly expressed on vascular endothelial cells. The mechanism of expression regulation remains to be improved. Previous studies have shown that SAA can promote the expression of VEGF in human Human carotid artery endothelial (HCtAE), and SAA can promote the angiogenesis of endothelial cells by activating the p38 MAPK signal transduction pathway. Therefore, we speculate that SAA may affect the expression of VEGFR2 to induce the expression of VEGFR2. Changes in angiogenesis. At present, there are some problems to be solved in SAA, VEGFR2 and angiogenesis: (1) whether SAA can affect the expression of VEGFR2; (2) the correlation signal transduction pathway that SAA affects the expression of VEGFR2; (3) whether SAA can affect the changes of blood vessels by affecting the expression of VEGFR2. Purpose 1. to explore the expression of SAA to VEGFR2 2. to explore the correlation signal transduction pathway that SAA affects VEGFR2 expression; 3. explore the role of SAA induced VEGFR2 expression in angiogenesis. Material method 1. cultured human umbilical vein endothelial cells cultured human umbilical vein endothelial cells (Human umbilical vein endoth) in the endothelial complete medium (Endothelial complete medium, ECM) Elial cells, HUVECs), once every 2-3 days, the liquid was replaced once every 2-3 days and placed in a temperature box containing 5% CO2. When the cell reached the appropriate density, the SAA1 or the excitant to study the signal pathway and the real-time quantitative PCR (Real-time PCR) of the inhibitor stimulated cell.2. were detected by Trizol method from HUVECs, and the corresponding utilization was obtained. The mRNA expression of.3. protein imprint (Western blot) was used to detect the endothelial cells and extract the protein. The protein expression was detected by the expression of GAPDH protein as the internal parameter, and the protein expression was expressed as the internal parameter of the.3.. The protein expression of the corresponding total protein was used as the internal parameter for the detection of p-ERK1/2, and the protein expression of p-JNK and p-p38 was tested in the 96 hole plate. After the gel was solidified, the cell volume of each hole was 2 * 104, and the control group without any stimulation was used as the control microscope to observe the tube formation of each experiment group.5.. All the values were statistically analyzed with Prism version 5 and SPSS 18 software. Mean mean standard deviation, P0.05 represents the statistical difference between the data. Results 1.SAA up-regulated the expression of VEGFR2 in HUVECs cells using SAA stimulated HUVECs with different concentration gradient (0,5,10 and 50 u g/ml) and collected cells after 24 hours. The extraction of protein and mRNA. was found by Western blot and Real-time. The expression of VEGFR2 (P0.01) was up-regulated in the manner of the dependability; the cells were stimulated by a fixed concentration of SAA (10 mu g/ml), and the cells were collected at different time points (0,2,3,6,12 and 24 hours). The extraction of protein and mRNA. was found by Western blot and Real-time PCR. PRL1 can mediate SAA induced VEGFR2 expression by invoking a specific inhibitor of the membrane receptor FPRL1, WRW4 prestimulating cells. Through Western blot, it is found that WRW4 significantly inhibits SAA induced VEGFR2 expression up-regulation (P0.01), compared with the individual SAA stimulation group. VEGFR2 expression (P0.01). This result shows that FPRL1 can mediate SAA induced VEGFR2 expression up regulation of.3 HAPKs signaling pathway can mediate SAA induced VEGFR2 expression up-regulated the use of SAA stimulation cells, by Western blot, compared with the control group, the level of phosphorylation is significantly enhanced and reached the peak at 1 hours. 01). Then using three specific inhibitors PD98059, SP600125 and SB203580 stimulating cells 6,12 and 24 hours.Western blot, the results showed that the addition of three inhibitor groups could reduce the expression of VEGFR2 in varying degrees (P0.05). This result shows that MAPKs signaling pathway can mediate SAA VEGFR2 table. Up regulation of the.4. membrane receptor FPRL1 can regulate the activation of the downstream MAPKs signaling pathway by activating the receptor FPRL1 specific inhibitor WRW4 pretreated cells. Western blot results show that WRW4 group can significantly inhibit the phosphorylation of MAPKs signaling pathway (P0.05) than the single SAA stimulus group. Furthermore, we use the specific agonist of FPRL1 to treat cells. RN blot results showed that compared with the control group, the WKYMVm treated cell group could significantly increase the phosphorylation level of the MAPKs signaling pathway (P0.01). This result shows that FPRL1 as a upstream signal molecule can regulate the increase of VEGR2: expression induced by the activated.5.SAA of the MAPKs signaling pathway and can promote the angiogenesis of endothelial cell receptor VEGFR. 2 of the stimulants and inhibitors of the specific inhibitor BIBF1120 and FPRL1/MAPKs signaling stimulated the cells. The results of the tube test showed that the addition of BIBF1120, WRW4, PD98059, SP600125 and SB20358 to the individual SAA stimulation group could significantly inhibit the endothelial cell formation (P0.01). The WKYMVm treatment group significantly promoted the endothelium compared with the control group. Cell formation (P0.01). These results confirm that the expression of SAA induced VEGFR2 and the related signaling pathway can promote the angiogenesis of endothelial cells. Conclusion 1.SAA can up regulate the expression of VEGFR2 in HUVECs cells; 2. FPRL1/MAPKs signal pathway mediates the up regulation of VEGFR2 expression induced by SAA, and the up regulation of VEGFR2 expression induced by 3.SAA can be promoted. The vascular neovascularization of the skin cells.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:R543.5
【相似文獻】
相關(guān)期刊論文 前10條
1 Toshiyuki Nakayama;Yang Cheul Cho;Yuka Mine;Ayumi Yoshizaki;Shinji Naito;Ichiro Sekine;;Expression of vascular endothelial growth factor and its receptors VEGFR-1 and 2 in gastrointestinal stromal tumors,leiomyomas and schwannomas[J];World Journal of Gastroenterology;2006年38期
2 葛曉利,高平進;VEGFR-1與心血管疾病[J];中國微循環(huán);2005年03期
3 李軍;洪梅;潘鐵成;;Clinical Significance of VEGF-C and VEGFR-3 Expression in Non-small Cell Lung Cancer[J];華中科技大學(xué)學(xué)報(醫(yī)學(xué)英德文版);2006年05期
4 曲行舟;王麗珍;胡永杰;張陳平;;VEGFR3在不同臨床分期舌癌癌周淋巴管中的表達[J];口腔頜面外科雜志;2007年02期
5 ;Serum VEGFR-3 and survival of advanced gastric cancer patients treated with FOLFOX[J];World Journal of Gastroenterology;2010年17期
6 張雄;張紅梅;李昱;米粲;;Expressions of Beta-Catenin,SUFU and VEGFR-2 Proteins in Medulloblastoma[J];Chinese Journal of Cancer Research;2007年04期
7 陸樹健;于大海;閆紅;李晶;羅婷婷;卿海云;;新VEGFR2靶向抑制劑篩選及其抗腫瘤生物學(xué)活性檢測[J];中國臨床新醫(yī)學(xué);2013年12期
8 馬惠文,梁后杰;VEGFR-3在食管鱗癌中的表達及與新生淋巴管形成的關(guān)系[J];第三軍醫(yī)大學(xué)學(xué)報;2004年17期
9 賈如江;侯麗艷;張有成;呂志誠;;VEGFR-3 siRNA體外對人結(jié)腸癌細胞生長的抑制作用[J];世界華人消化雜志;2008年16期
10 王曉飛;;下調(diào)VEGFR-1基因表達對抑制乳腺癌細胞增殖的影響[J];臨床醫(yī)學(xué)工程;2010年06期
相關(guān)會議論文 前10條
1 ;Expression and biological function of vascular endothelial growth factor receptors in normal human and psoriatic epidermal keratinocytes[A];中華醫(yī)學(xué)會第十五次全國皮膚性病學(xué)術(shù)會議論文集[C];2009年
2 黃定德;李前偉;馮世斌;;基于VEGFR靶點的高親和力多肽的篩選及鑒定[A];中華醫(yī)學(xué)會第九次全國核醫(yī)學(xué)學(xué)術(shù)會議論文摘要匯編[C];2011年
3 王明明;張曉;李泉;田潤華;葛銀林;;敲減VEGFR-1基因抑制乳腺癌細胞增殖的研究[A];華東六省一市生物化學(xué)與分子生物學(xué)會2008年學(xué)術(shù)交流會論文摘要匯編[C];2008年
4 左朝暉;李官成;胡錦躍;謝平麗;李躍輝;周國華;;骨髓中表達VEGFR-1的造血前體干細胞啟動了膽囊癌淋巴結(jié)預(yù)轉(zhuǎn)移及臨床意義[A];中國抗癌協(xié)會膽道腫瘤專業(yè)委員會成立大會暨第一屆全國膽道腫瘤學(xué)術(shù)會議論文集[C];2009年
5 吳賢杰;;VEGFR-2在非內(nèi)皮來源細胞上表達的研究進展(綜述)[A];2012年浙江省皮膚病性病學(xué)術(shù)會議論文集[C];2012年
6 蘇葉翔;徐丹;成宜娟;尤啟冬;孫麗萍;;基于雜環(huán)并嘧啶類VEGFR-2抑制劑的設(shè)計及合成方法學(xué)研究[A];2012長三角藥物化學(xué)研討會論文集[C];2012年
7 劉斌;趙怡芳;張文峰;;口腔頜面部淋巴管畸形的VEGF-C和VEGFR-3表達[A];2002全國口腔頜面部血管瘤治療與研究學(xué)術(shù)研討會論文匯編[C];2002年
8 郭海霞;李文益;薛紅漫;黎陽;夏焱;徐令;;慢病毒載體攜帶的VEGFR_2 sRNA對HL60的抑制作用[A];中華醫(yī)學(xué)會第十四次全國兒科學(xué)術(shù)會議論文匯編[C];2006年
9 陶蓓蓓;劉姝媛;張彩彩;付偉;蔡文杰;王益;沈慶;王銘潔;陳瑩;張利佳;朱依諄;朱依純;;H2S促血管新生的機制研究——H2S“受體”VEGFR2的發(fā)現(xiàn)[A];中國生理學(xué)會張錫鈞基金第十二屆全國青年優(yōu)秀生理學(xué)學(xué)術(shù)論文交流及評獎會議綜合摘要[C];2013年
10 王熙才;劉馨;陳艷;金從國;陳曉群;黃尤光;周永春;;口服型VEGFR-3 DNA疫苗在抑制肺癌中的作用[A];第十六屆中國科協(xié)年會——分3環(huán)境污染及職業(yè)暴露與人類癌癥學(xué)術(shù)研討會論文集[C];2014年
相關(guān)博士學(xué)位論文 前10條
1 趙文娟;氧濃度對人內(nèi)皮祖細胞VEGFR-1、VEGFR-2和CXCR4受體表達調(diào)控的研究[D];山東大學(xué);2015年
2 高國銳;激酶PI3K和VEGFR-2抑制劑的設(shè)計合成及生物活性研究[D];華東理工大學(xué);2015年
3 張祿卿;血管內(nèi)皮細胞生長因子受體-3在血管新生與淋巴管新生中的不同機制研究[D];南京大學(xué);2011年
4 趙劍峰;非諾貝特對人RPE細胞及BN大鼠CNV模型VEGF-C和VEGFR-3表達變化影響的體內(nèi)、體外實驗研究[D];昆明醫(yī)科大學(xué);2016年
5 艾軍華;VEGFR-1活化誘導(dǎo)上皮—間質(zhì)表型轉(zhuǎn)化促進肝細胞癌侵襲轉(zhuǎn)移的研究[D];第三軍醫(yī)大學(xué);2008年
6 魏春山;葉下珠及其復(fù)方對HBx介導(dǎo)肝癌VEGFR3表達的影響[D];廣州中醫(yī)藥大學(xué);2012年
7 石小燕;VEGF-C及其受體VEGFR-3/Flt-4與腫瘤淋巴管生成、增殖及轉(zhuǎn)移關(guān)系的研究[D];華中科技大學(xué);2006年
8 王玲;HLECs分離培養(yǎng)及VEGFR-3結(jié)合肽靶向卵巢癌新生淋巴管分子顯像的實驗研究[D];第三軍醫(yī)大學(xué);2009年
9 伍星;靶向VEGFR2超聲分子顯像小鼠H22移植瘤實驗研究[D];重慶醫(yī)科大學(xué);2009年
10 范良生;靶向VEGFR-3的多肽TMTP2在惡性腫瘤靶向治療中的應(yīng)用研究[D];華中科技大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 蘇婷婷;基于識別血管內(nèi)皮生長因子受體2(VEGFR2)的腫瘤靶向治療研究[D];西南大學(xué);2015年
2 章偉慧;PKGⅡ?qū)ξ赴┘毎鸙EGFR2介導(dǎo)的信號轉(zhuǎn)導(dǎo)通路的影響及分子機制[D];江蘇大學(xué);2016年
3 呂梅;血清淀粉樣蛋白A對VEGFR2的表達及血管新生影響的研究[D];山東大學(xué);2016年
4 余楊瀟;新型芳基脲類VEGFR抑制劑的設(shè)計、合成及抗腫瘤活性研究[D];廣西醫(yī)科大學(xué);2016年
5 張瑋;文昌魚VEGF與VEGFR的時空表達與功能初探[D];中國海洋大學(xué);2012年
6 王定平;VEGFR1陽性造血祖細胞在大腸癌肝轉(zhuǎn)移中的作用[D];瀘州醫(yī)學(xué)院;2012年
7 李鋼;新疆多民族食管鱗癌VEGFR-2與臨床病理生物學(xué)關(guān)系的研究[D];新疆醫(yī)科大學(xué);2015年
8 胡偉偉;VEGFR-Fc在DG44細胞中的表達及其生物活性檢測[D];安徽大學(xué);2013年
9 黃大偉;VEGFR_2siRNA腺病毒載體的構(gòu)建及其對腫瘤血管生成的影響[D];第四軍醫(yī)大學(xué);2005年
10 付春茂;弱激光照射對兔正畸牙周組織中VEGF受體VEGFR-2(VEGFR-2/KDR)表達影響的研究[D];吉林大學(xué);2005年
,本文編號:1913622
本文鏈接:http://www.sikaile.net/yixuelunwen/xxg/1913622.html