交流磁流體血泵的初步研究
[Abstract]:Objective: Heart failure (HF), as the end-stage of various cardiovascular diseases, is increasing year by year and the patients are younger. As an effective way to treat HF, the research and development of artificial heart is a hotspot of scientists all over the world, which can be roughly divided into total artificial heart and ventricular assist device. Two kinds of ventricular assist devices are introduced in this paper. The core component of the artificial blood pump is mechanical components, which inevitably leads to hemolysis, thrombosis and poor tissue compatibility. Lorentz force is used instead of mechanical force to promote blood flow. There is no contact between mechanical parts and blood. It is hopeful that the problems of poor histocompatibility, hemolysis and thrombosis of several generations of artificial blood pumps can not replace the heart permanently. Methods: The base of ACMHD artificial blood pump developed by the Institute of Electrical Engineering, Chinese Academy of Sciences was studied. On the basis of this blood pump to optimize the hemodynamic chamber and motor conversion frequency (center field strength 0.9T, motor alternating frequency 0-80hz), and further in-depth study. Conductivity, the height of NaCl solution in power room and power room H. Measure and record the number of cycles of tracer particles in each working condition and the conductivity and temperature of NaCl solution before and after experiment. Observe the flow of NaCl solution in power room. According to the collected data, the best working condition of blood pump is obtained. On the basis of the previous performance test, the sheep blood was placed in the AC MHD blood pump power room, and the frequency of magnetic field change (i.e. the speed of three-phase asynchronous motor) was adjusted at room temperature (25 C), and the height of blood level H was transfused through the blood flow. The blood samples were divided into two groups: the control group (without external magnetic field) and the exposed group (with alternating magnetic field exposure for 3 hours, h=87mm). Result: Blood pump salt water performance test experiment: 1. Because the axial path of induction current is too low, the circular hemodynamic chamber (H = 20mm, H = 40mm) which was originally conceived to approximate the diameter of aorta was designed, regardless of changing the conductivity of conductive liquid or increasing the frequency of change of the applied motor. The flow rate of the conductive liquid is proportional to the variation frequency of the applied motor and the conductivity of the conductive liquid. The relationship between the conductive liquid and the height of the blood chamber is quadratic. In vitro sheep blood pump related test: 1. Sheep blood in the alternating magnetic fluid pump (motor frequency 70 hz, longitudinal height H = 100 mm annular channel) can achieve continuous flow, its flow rate is 2 mm / s, flow rate is 1.44 ml / h. Compared with the control group, the number of platelets decreased (P = 0.000 (27) 0.5). 3, sheep blood flowed at alternating frequency 70 Hz and annular channel height H = 100 mm. Whole blood high shear viscosity decreased (p = 0.006 (27) 0.05); whole blood low shear viscosity decreased, P = 0.000 (27) 0.001, with significant statistical significance. The cytoplasm of blood cells (mainly red blood cells) was obviously shallower than that of the control group, and there was a cluster of black particles in the cytoplasm. In dew group, 4?0.15, the typical double-concave disc structure (indicated by red arrow) disappeared after exposure to alternating magnetic field in control group. Conclusion: 1. The experiment proves that the development of alternating magnetic fluid blood pump is feasible, and the continuous flow of blood flow can be realized completely; 2. The experiment proves that the optimal frequency of magnetic field change is 70 hz. Under this condition, the energy conversion of blood pump is the greatest, and the influence on blood is the smallest. 3. Experiments prove that blood as a complex non-Newtonian fluid has no obvious damage to blood cells after the operation of alternating magnetic fluid blood pump. 4. Experiments prove that the blood viscosity of isolated blood after alternating magnetic fluid blood pump operation is the same as that of other magnetism. The change of viscosity of sheep blood was not obvious because of the particularity of alternating magnetic field. 5. It was found that the structure and internal substances of sheep blood cells (mainly red blood cells) were changed after acute exposure to alternating magnetic fluid (AMF), and whether it would affect the blood. The function of liquid cells will advance the direction of experimental evaluation for us.
【學位授予單位】:蘭州大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R654.2
【相似文獻】
相關期刊論文 前10條
1 杜松林;肖學鈞;;流場測試技術及其在血泵流場測試中的應用[J];北京生物醫(yī)學工程;2007年03期
2 谷凱云;高斌;常宇;;基于心率的主動脈血泵流量控制[J];中國組織工程研究與臨床康復;2011年13期
3 錢坤喜,王惠蓀;小型左心室輔助血泵的研制[J];中國生物醫(yī)學工程學報;1987年02期
4 藺嫦燕,孫衍慶,董培青,魏文寧,王建華,王秀敏;微型血泵的研制及其模擬實驗研究[J];中國生物醫(yī)學工程學報;1997年01期
5 肖佐;新型人造血泵即將面世[J];知識就是力量;1999年10期
6 錢坤喜,萬福凱,曾培,茹偉民,袁海宇;永磁磁浮葉輪在血泵內(nèi)的偏心距測量及分析[J];江蘇大學學報(自然科學版);2004年01期
7 俞曉青,丁文祥,王偉,陳恩,蔣祖明,鄒文艷;磁偶合驅(qū)動軸流式血泵的可行性研究[J];生物醫(yī)學工程學雜志;2004年01期
8 徐先懂;譚建平;;血泵驅(qū)動電機調(diào)速系統(tǒng)研究[J];機電工程技術;2006年10期
9 徐先懂;譚建平;龔中良;;基于心室功的血泵控制算法研究[J];生物醫(yī)學工程學雜志;2007年05期
10 徐先懂;譚建平;;血泵驅(qū)動電機的生理控制策略研究[J];生物醫(yī)學工程與臨床;2007年06期
相關會議論文 前4條
1 劉世昌;;進出口導輪葉片數(shù)對血泵流動性能影響的模擬分析[A];中國金屬學會冶金設備分會2012年全國冶金設備液壓潤滑氣動技術交流會會刊[C];2012年
2 吳廣輝;藺嫦燕;李冰一;王景;;CFD技術在血泵設計中的應用[A];中國生物醫(yī)學工程進展——2007中國生物醫(yī)學工程聯(lián)合學術年會論文集(下冊)[C];2007年
3 常宇;劉有軍;喬愛科;南群;;心衰血流動力學研究與主動脈血泵研究進展[A];第十屆全國生物力學學術會議暨第十二屆全國生物流變學學術會議論文摘要匯編[C];2012年
4 陳普興;;知行保健法[A];陜西老年學通訊·2013年第2期(總第94期)[C];2013年
相關重要報紙文章 前2條
1 記者 陳飛;終末期心衰治療用血泵研制獲突破[N];健康報;2013年
2 記者 陳立;植入航天 心綿羊創(chuàng)存活記錄[N];中國航天報;2013年
相關博士學位論文 前4條
1 劉云龍;大間隙永磁軸流式血泵速度控制研究[D];中南大學;2013年
2 徐先懂;軸流式血泵外磁場驅(qū)動及其控制系統(tǒng)研究[D];中南大學;2006年
3 龔中良;微型植入式血泵血液自潤滑機理研究[D];中南大學;2006年
4 張巖;一、一種新型軸流泵式心臟輔助血泵的研制和體外性能實驗 二、外軸承血泵方案(整體轉子方案)的提出[D];中國協(xié)和醫(yī)科大學;2007年
相關碩士學位論文 前10條
1 陶鵬先;交流磁流體血泵的初步研究[D];蘭州大學;2017年
2 何林峰;人工心臟的數(shù)值仿真與設計優(yōu)化[D];西南交通大學;2015年
3 張帆;離心式磁懸浮血泵的流體仿真與實驗研究[D];哈爾濱理工大學;2016年
4 胡維巖;基于自主開發(fā)的血泵樣機性能分析[D];浙江大學;2013年
5 楊劍;電磁血泵的研制及體外模擬實驗[D];第四軍醫(yī)大學;2001年
6 劉世昌;結構參數(shù)對錐形螺旋血泵性能影響的研究[D];燕山大學;2012年
7 范灝;具有周向分布楔形間隙結構的液力懸浮血泵設計與研究[D];浙江大學;2014年
8 張雷;多用途雙心室體外輔助循環(huán)血泵的實驗研究分析[D];暨南大學;2014年
9 劉志堅;大間隙磁力驅(qū)動血泵動力學特性研究[D];中南大學;2010年
10 祝忠彥;血泵大間隙磁力傳動系統(tǒng)磁力矩相位角及電磁體溫升研究[D];中南大學;2011年
,本文編號:2195652
本文鏈接:http://www.sikaile.net/yixuelunwen/waikelunwen/2195652.html