基于運(yùn)動(dòng)學(xué)分析的膝關(guān)節(jié)動(dòng)態(tài)旋轉(zhuǎn)對(duì)位與屈伸軸線的研究
本文選題:膝關(guān)節(jié) + 運(yùn)動(dòng)學(xué)。 參考:《第三軍醫(yī)大學(xué)》2015年博士論文
【摘要】:研究背景膝關(guān)節(jié)的運(yùn)動(dòng)學(xué)是理解膝關(guān)節(jié)的生理功能以及病理改變的基礎(chǔ)科學(xué)。與生物力學(xué)一樣,它也是諸多臨床手術(shù)的基礎(chǔ),如全膝關(guān)節(jié)置換術(shù)(total knee arthroplasty,TKA)、前交叉韌帶重建術(shù)等。在過去的一百多年中,有諸多的解剖學(xué)、生物力學(xué)的學(xué)者及臨床醫(yī)生對(duì)膝關(guān)節(jié)的運(yùn)動(dòng)學(xué)進(jìn)行了廣泛的研究。由于運(yùn)動(dòng)本身的復(fù)雜性,既往學(xué)者建立了多種理論和模型來對(duì)膝關(guān)節(jié)的運(yùn)動(dòng)進(jìn)行解釋和描述。在這些工作的基礎(chǔ)上,現(xiàn)代的膝關(guān)節(jié)手術(shù)技術(shù)有了飛速發(fā)展。其中最典型的是TKA。早期的TKA手術(shù)具有較高的失敗率和較短的假體壽命,而現(xiàn)代的TKA盡管仍存在一些亟待解決的問題,但成功率已經(jīng)大幅提高,成為被學(xué)界廣范認(rèn)可的治療終末期骨性關(guān)節(jié)炎的金標(biāo)準(zhǔn)。盡管如此,在膝關(guān)節(jié)運(yùn)動(dòng)學(xué)的有關(guān)研究中,仍有一些問題尚未被完全闡明。其中,兩個(gè)重要的問題是膝關(guān)節(jié)的生理對(duì)位和屈伸軸線(flexion-extension axis,FEA)的測定。對(duì)于前者,既往的研究者對(duì)冠狀面和矢狀面的對(duì)位問題已較為明確。比如在冠狀面,學(xué)者們通常認(rèn)為在理想狀態(tài)下從股骨頭中心到踝關(guān)節(jié)中心走行的下肢力線應(yīng)經(jīng)過膝關(guān)節(jié)的中心。然而對(duì)于膝關(guān)節(jié)在橫斷面的對(duì)位,既往的研究則較為匱乏,并且缺少一致性的結(jié)論。這種情況很大程度上是由于膝關(guān)節(jié)的橫斷面對(duì)位容易受到膝關(guān)節(jié)運(yùn)動(dòng)的影響;由于脛骨與股骨的相對(duì)旋轉(zhuǎn)是伴隨著關(guān)節(jié)屈伸而存在的固有運(yùn)動(dòng),膝關(guān)節(jié)橫斷面的對(duì)位也是隨著屈膝角度實(shí)時(shí)變化的。從生物力學(xué)角度來說,這種在功能活動(dòng)中表現(xiàn)出的動(dòng)態(tài)對(duì)位關(guān)系對(duì)于膝關(guān)節(jié)的生理功能(如髕股關(guān)節(jié)功能等)以及臨床診療(如TKA中脛骨假體的旋轉(zhuǎn)對(duì)位等)應(yīng)具有更重要的意義。在既往有限的針對(duì)膝關(guān)節(jié)橫斷面對(duì)位關(guān)系的研究中,絕大多數(shù)考察的是伸直位時(shí)靜態(tài)的對(duì)位關(guān)系,而對(duì)基于運(yùn)動(dòng)學(xué)的動(dòng)態(tài)對(duì)位則鮮有涉及。對(duì)于膝關(guān)節(jié)的FEA,在過去的幾十年中學(xué)者們已從很多不同的角度對(duì)其進(jìn)行了研究。早期的學(xué)者認(rèn)為膝關(guān)節(jié)的FEA不是固定的,而是隨著屈膝角度的變化在股骨遠(yuǎn)端按照一定的規(guī)律浮動(dòng)。比如針對(duì)二維運(yùn)動(dòng)的“瞬時(shí)旋轉(zhuǎn)中心”和針對(duì)三維運(yùn)動(dòng)的“瞬時(shí)旋轉(zhuǎn)軸”的概念。這種非固定的旋轉(zhuǎn)軸心的數(shù)學(xué)表達(dá)非常復(fù)雜,不利于臨床醫(yī)生掌握和應(yīng)用。近年來的研究者傾向于認(rèn)為膝關(guān)節(jié)是圍繞著兩條固定的軸線運(yùn)動(dòng):圍繞著fea進(jìn)行屈伸,同時(shí)圍繞著另一條豎直軸線(longitudinalaxis,lra)進(jìn)行內(nèi)外旋。該模型簡化了運(yùn)動(dòng)的表述形式,同時(shí)可以將固定化的功能軸線和解剖軸線進(jìn)行關(guān)聯(lián)。fea的位置和方向?qū)εR床具有重要參考價(jià)值,比如tka中假體的設(shè)計(jì)和安裝等。因此對(duì)其進(jìn)行準(zhǔn)確的解剖定位十分重要。然而,目前學(xué)界對(duì)于fea的解剖位置仍然存在爭議。既往的學(xué)者認(rèn)為股骨的髁上軸(transepicondylaraxis,tea)與fea具有一致性。然而這一結(jié)論被最近的實(shí)驗(yàn)所質(zhì)疑。學(xué)者們發(fā)現(xiàn)tea的方向在屈膝中會(huì)發(fā)生改變,因此不符合固定旋轉(zhuǎn)軸的要求;另一些學(xué)者主張連接股骨后髁中心的幾何中心軸(cylinderaxis,ca)才是與fea最接近的解剖軸線,但對(duì)于該結(jié)論目前仍需更多的實(shí)驗(yàn)來驗(yàn)證。此外既往對(duì)于fea的計(jì)算方法也存在一定缺點(diǎn)。它要求先通過反復(fù)的膝關(guān)節(jié)內(nèi)外旋實(shí)驗(yàn)來定位lra,再根據(jù)lra的位置測量fea。這種方法僅適合膝關(guān)節(jié)標(biāo)本的體外測量實(shí)驗(yàn),而難于在活體運(yùn)動(dòng)學(xué)采集中應(yīng)用。因此開發(fā)一種新的計(jì)算fea的方法也十分必要。本研究的目標(biāo)是,首先建立一套基于雙平面x線攝影結(jié)合3d模型與2d影像配準(zhǔn)技術(shù)的膝關(guān)節(jié)運(yùn)動(dòng)學(xué)檢測方法,并對(duì)其準(zhǔn)確性進(jìn)行驗(yàn)證。在此基礎(chǔ)上,采集正常膝關(guān)節(jié)在體負(fù)重情況下的運(yùn)動(dòng)學(xué)數(shù)據(jù),分析股骨與脛骨在橫斷面上動(dòng)態(tài)的對(duì)位關(guān)系。對(duì)此我們定義了一個(gè)股骨在運(yùn)動(dòng)過程中綜合性的前-后方向,并將其和多條脛骨的解剖參考軸線進(jìn)行對(duì)比。第三個(gè)目標(biāo)是建立一種新的方法對(duì)fea進(jìn)行計(jì)算,隨后將fea同tea和ca兩條解剖軸線的位置進(jìn)行對(duì)比,判斷哪一條可以更好地作為fea的解剖替代。這些功能與解剖的關(guān)系的建立將為膝關(guān)節(jié)的基礎(chǔ)研究和臨床提供有意義的參考。研究方法1、雙平面x線攝影與三維模型-二維影像配準(zhǔn)技術(shù)的建立及驗(yàn)證研究。我們通過一臺(tái)固定式數(shù)字x光機(jī)(digitalradiography,dr)與一臺(tái)移動(dòng)式dr組建雙平面x線影像采集系統(tǒng)。兩臺(tái)dr在場地中互相垂直安放,x線束相交的區(qū)域?yàn)橛行С上駞^(qū)域。受檢者可以在成像區(qū)域中完成膝關(guān)節(jié)的負(fù)重屈伸運(yùn)動(dòng)。在每一個(gè)屈膝的位置,兩臺(tái)dr可以同時(shí)從兩個(gè)角度捕捉目標(biāo)膝關(guān)節(jié)的x線影像。隨后通過ct掃描及三維重建獲取目標(biāo)膝關(guān)節(jié)的幾何實(shí)體模型。三維模型與二維模型的配準(zhǔn)在現(xiàn)有的計(jì)算機(jī)三維建模軟件中完成。配準(zhǔn)的虛擬環(huán)境嚴(yán)格按照運(yùn)動(dòng)學(xué)采集時(shí)實(shí)驗(yàn)室的物理環(huán)境的比例設(shè)置。配準(zhǔn)的過程依靠手動(dòng)完成,采用平移和旋轉(zhuǎn)的方式對(duì)幾何模型的空間位置進(jìn)行調(diào)整,以模型輪廓和雙平面影像輪廓達(dá)到完美匹配為目標(biāo)。在對(duì)多個(gè)屈膝位置的影像進(jìn)行配準(zhǔn)之后,通過對(duì)模型的整合即可獲取膝關(guān)節(jié)連續(xù)運(yùn)動(dòng)的軌跡。對(duì)于該方法的驗(yàn)證,我們采用尸體標(biāo)本進(jìn)行。首先將膝關(guān)節(jié)標(biāo)本固定在某個(gè)屈膝角度,并進(jìn)行ct掃描和三維重建,獲取的模型作為標(biāo)準(zhǔn)參照。隨后采用雙平面x線攝影與三維模型-二維影像配準(zhǔn)的方法對(duì)同一標(biāo)本進(jìn)行檢測,將配準(zhǔn)的模型與上述標(biāo)準(zhǔn)參照進(jìn)行對(duì)比,從而對(duì)系統(tǒng)誤差進(jìn)行評(píng)估。2、膝關(guān)節(jié)橫斷面的動(dòng)態(tài)旋轉(zhuǎn)對(duì)位研究利用如前述所建立的運(yùn)動(dòng)學(xué)采集方法,我們采集了20例健康成人志愿者單側(cè)膝關(guān)節(jié)的運(yùn)動(dòng)學(xué)數(shù)據(jù)。對(duì)于每個(gè)受試者,分別采集其在單腿弓步屈膝運(yùn)動(dòng)下0°、15°、30°、60°、90°和120°時(shí)的運(yùn)動(dòng)學(xué)數(shù)據(jù)。在0°的模型中,確定一條股骨的前后軸線(femoralanteroposterioraxis,faa),并追蹤該軸線的方向在上述屈膝位置中的變化。在此基礎(chǔ)之上,計(jì)算出一個(gè)綜合性的方向,即動(dòng)態(tài)股骨前后軸線(femoralanteroposterioraxisofmotion,faam),該方向?qū)⑴c各屈膝角度下的faa保持最小的誤差平方和。我們認(rèn)為faam是一條代表了在整個(gè)動(dòng)態(tài)屈膝過程中股骨綜合性的前-后方向的軸線。在此基礎(chǔ)上,faam與數(shù)條定義在脛骨上的解剖參考軸線的位置進(jìn)行比對(duì),從而建立解剖-功能的關(guān)系。對(duì)于這些軸線,測量它們與faam間角度偏差。此外,還著重考察了faam與脛骨結(jié)節(jié)間的位置關(guān)系。3、膝關(guān)節(jié)的屈伸軸線的研究基于上一部分研究中建立的20例樣本的膝關(guān)節(jié)運(yùn)動(dòng)學(xué)數(shù)據(jù)庫,我們開發(fā)了一個(gè)新算法對(duì)fea進(jìn)行計(jì)算。簡而言之,我們首先將股骨的三維模型轉(zhuǎn)化為表面點(diǎn)云數(shù)據(jù)集;獲取并追蹤點(diǎn)云中每個(gè)點(diǎn)的初始坐標(biāo)值以及其在整個(gè)屈膝過程中的變化,并計(jì)算坐標(biāo)值在豎直方向的變化累積值。隨后在點(diǎn)云集中,篩選出兩個(gè)累積變化值最小的點(diǎn),分別位于股骨內(nèi)髁和股骨外髁表面。進(jìn)而我們將連接上述兩點(diǎn)的直線定義為fea。該算法的基本思想是,圓形剛體在平面上滾動(dòng)時(shí),其旋轉(zhuǎn)中心應(yīng)始終與平面間保持相對(duì)恒定的距離,而旋轉(zhuǎn)中心以外的點(diǎn)則會(huì)出現(xiàn)較大幅度的上下起伏。在此基礎(chǔ)之上,我們比較了fea與股骨遠(yuǎn)端兩條常用軸線間的位置關(guān)系;這兩條軸線包括tea和ca。測量包括fea、tea與ca三者之間的在平面以及三維空間的角度差異,以及三條軸線位于股骨髁表面的端點(diǎn)間的距離;诖,tea與fea以及ca與fea間的匹配程度得以進(jìn)行直接的比較。結(jié)果1、本研究所建立的雙平面x線攝影與三維模型-二維影像配準(zhǔn)技術(shù)可以有效地對(duì)膝關(guān)節(jié)負(fù)重狀態(tài)下的運(yùn)動(dòng)學(xué)進(jìn)行檢測,并保持較高精度。根據(jù)尸體驗(yàn)證實(shí)驗(yàn)的結(jié)果,該方法在前后、內(nèi)外以及遠(yuǎn)近方向上平移自由度的平均偏差分別為0.80mm,0.81mm和0.70mm;在冠狀面、矢狀面以及橫斷面三個(gè)平面上旋轉(zhuǎn)自由度的平均偏差分別為0.79°,0.88°和1.06°。2、使用上述建立的方法成功獲取了所有參檢志愿者的運(yùn)動(dòng)學(xué)信息。faa在從伸直位到屈膝的過程中表現(xiàn)出外旋的趨勢,在屈膝90°時(shí)達(dá)到最大(11.6°)。在參與測量的解剖軸線當(dāng)中,沒有任何一條可以與faam完全匹配。它們與faam的角度差異從外旋11.0°到內(nèi)旋9.7°。然而,當(dāng)faam經(jīng)過脛骨平臺(tái)中心時(shí),其傾向于與脛骨結(jié)節(jié)相交于其內(nèi)側(cè)1/3部分,即內(nèi)側(cè)緣與中內(nèi)1/3點(diǎn)之間。3、在所有樣本中均成功計(jì)算出了fea。其從股骨后髁的中心區(qū)域穿過。在參與對(duì)比的兩條解剖軸線中(tea與ca),fea與tea在三維空間以及橫斷面的角度差異高于fea與ca(三維:3.45°vs1.98°,p0.001;橫斷面:2.72°vs1.19°,p=0.002),但兩者在冠狀面則沒有顯著差異(1.61°vs0.83°,p=0.076)。關(guān)于三條軸線在股骨髁表面的端點(diǎn),fea與tea在內(nèi)側(cè)面的端點(diǎn)間的距離顯著高于fea與ca(6.7mmvs1.9mm,p0.001);而在外側(cè)面兩者沒有顯著差異(3.2mmvs2.0m,p=0.16)。結(jié)論1、本研究所建立的雙平面x線攝影與三維模型-二維影像配準(zhǔn)技術(shù),是一個(gè)檢測膝關(guān)節(jié)在體負(fù)重狀態(tài)下運(yùn)動(dòng)學(xué)的有效方法。其具有較高的精度,在平移和旋轉(zhuǎn)自由度上的偏差可以分別控制在1mm以下和1°左右。與其他的運(yùn)動(dòng)學(xué)檢測手段,比如光學(xué)運(yùn)動(dòng)采集、mri以及x線立體攝影測量等相比,我們所建立的方法在易用性、準(zhǔn)確性和可行性間達(dá)到了一個(gè)較好的平衡,可以滿足后續(xù)實(shí)驗(yàn)的需要。2、目前在膝關(guān)節(jié)中較為常用的幾條解剖參考軸線并不能準(zhǔn)確地指示膝關(guān)節(jié)在橫斷面上的動(dòng)態(tài)對(duì)位。與之相比,后者與脛骨結(jié)節(jié)的中內(nèi)三分之一部分可能存在更多的相關(guān)性。本研究所發(fā)現(xiàn)的這種功能與解剖的關(guān)系可幫助我們更好地理解膝關(guān)節(jié)的生理功能。此外該發(fā)現(xiàn)也可能為tka提供一定的理論支持。針對(duì)目前臨床所使用的利用脛骨結(jié)節(jié)中內(nèi)1/3作為脛骨假體旋轉(zhuǎn)對(duì)位的解剖參考標(biāo)志的方法,本研究為其提供了一定的實(shí)驗(yàn)依據(jù)。3、我們建立的新方法可以基于連續(xù)的膝關(guān)節(jié)運(yùn)動(dòng)學(xué)數(shù)據(jù)對(duì)fea進(jìn)行計(jì)算。膝關(guān)節(jié)的fea并不與tea相吻合,與之相比,它與ca在空間上更加接近。因此ca可能是fea的一個(gè)更好的解剖替代。本研究所發(fā)現(xiàn)的這種功能與解剖的關(guān)系可幫助我們更好地理解膝關(guān)節(jié)的生理功能。由于CA更接近于FEA,它可能具有更大的臨床應(yīng)用價(jià)值。
[Abstract]:The kinematics of the knee joint is the basic science to understand the physiological functions and pathological changes of the knee joint. Like biomechanics, it is also the basis of many clinical operations, such as total knee replacement (total knee arthroplasty, TKA), anterior cruciate ligament reconstruction, and so on. In the past more than 100 years, there are many anatomy and organisms. Mechanical scholars and clinicians have conducted extensive research on the kinematics of the knee joint. Due to the complexity of the motion itself, a variety of theories and models have been established to explain and describe the motion of the knee joint. On the basis of these work, modern knee surgery techniques have developed rapidly. The most typical of these is TKA. Early TKA surgery has a high failure rate and a shorter prosthesis life, while the modern TKA still has some problems to be solved, but the success rate has been greatly improved, which has become the golden standard for the treatment of end-stage osteoarthritis of the end of the study. The two important questions are the physiological alignment of the knee and the flexion-extension axis (FEA). For the former, the former researchers have been more explicit about the coronal and sagittal facet. For example, on the coronal plane, the learners generally believe that the femoral head is from the center of the femoral head to the center of the femoral head. In the center of the ankle joint, the force line of the lower extremities should go through the center of the knee joint. However, the previous study is relatively scarce and lacks consistency in the cross section of the knee joint. This is largely due to the vulnerability of the knee joint to the knee joint movement; the relative of the tibia and the femur. Rotation is an inherent movement associated with joint flexion and extension, and the cross section of the knee is also changed with the angle of knee flexion. From the biomechanical point of view, the dynamic alignment of the functional activities in the functional activities (such as patellar joint function, etc.) and clinical diagnosis (such as tibial sham in TKA) In the previous limited study of the position relationship of the knee joint transection, the overwhelming majority of the investigation is the static alignment at the straight position, while the dynamic alignment based on the kinematics is rarely involved. For the FEA of the knee joint, many scholars have gone from the past few decades. The early scholars believe that the FEA of the knee joint is not fixed, but is fluctuated at the distal femur with a variation of the angle of the knee. For example, the concept of "instantaneous rotation center" for two-dimensional motion and the concept of "instantaneous axis of rotation" for three-dimensional motion. This non fixed rotating axis. The mathematical expression is very complex and is not conducive to the mastery and application of the clinicians. In recent years, researchers tend to think that the knee joint is around two fixed axes motion: the flexion and extension around the FEA and the internal and external rotation around another vertical axis (longitudinalaxis, LRA). The location and direction of the.Fea associated with the immobilized functional axis and the anatomical axis are of important reference value to the clinic, such as the design and installation of the prosthesis in the TKA. Therefore, it is important to make an accurate anatomical location for it. However, there is still a dispute over the anatomical position of FEA. The transepicondylaraxis (tea) is consistent with FEA. However, this conclusion has been questioned by recent experiments. Scholars have found that the direction of tea will change in the knee and therefore does not meet the requirements of the fixed axis of rotation; other scholars argue that the geometric center axis (cylinderaxis, CA) connecting the posterior condyle center of the femur (cylinderaxis, CA) is the closest to FEA The anatomic axis, however, still needs more experiments to verify this conclusion. In addition, there are some shortcomings in the previous calculation method for FEA. It is required to locate LRA through repeated internal and external rotation experiments of the knee joint, and then measure fea. according to the position of LRA only suitable for the test of the knee joint specimens in vitro, but difficult to live in. It is also necessary to develop a new method of calculating FEA. The aim of this study is to establish a set of knee joint kinematics detection methods based on double plane X-ray photography combined with 3D model and 2D image registration technique, and to verify its accuracy. On this basis, the normal knee joint is collected in body negative. The kinematic data under heavy circumstances analysis the dynamic alignment of the femur and tibia on the cross section. We define a comprehensive front and back direction of a femur during the movement and compare it with the anatomical reference axis of the multiple tibia. The third goal is to establish a new method to calculate the FEA, and then the FEA Comparison with the position of the two anatomical axes of tea and Ca to determine which one can be a better substitute for the anatomy of FEA. The establishment of the relationship between these functions and anatomy will provide a meaningful reference for the basic research and clinic of the knee joint. Method 1, biplane X-ray photography and three-dimensional model - two-dimensional image registration technology We set up a dual plane X-ray image acquisition system with a fixed digital X-ray machine (digitalradiography, Dr) and a mobile Dr. Two sets of Dr are placed vertically in the site. The area of the X-ray beam intersection is an effective imaging area. The receiver can perform the flexion and extension movement of the knee joint in the imaging area. The position of the knee, two DR can capture the X-ray images of the target knee joint from two angles. Then, the geometric entity model of the target knee joint is obtained by CT scanning and three-dimensional reconstruction. The registration of the three-dimensional model and the two-dimensional model is completed in the existing computer 3D modeling software. The virtual environment of registration is strictly according to the kinematic acquisition. The proportion of the physical environment in the laboratory is set. The registration process relies on manual completion. The spatial position of the geometric model is adjusted by translation and rotation. The model contour and the biplane image contour are matched perfectly as the target. After the registration of the images of multiple knees, the integration of the model can be obtained. To verify the continuous motion of the knee joint, we use the cadaver specimens to verify the method. First, the specimens of the knee joint are fixed on a knee flexion angle, and the CT scan and three-dimensional reconstruction are used as the standard reference. Then the same specimen is used by the double plane X-ray photography and the three-dimensional model - two-dimensional image registration method. By comparing the registration model with the above standard reference, the system error is evaluated by.2. The dynamic rotation of the knee joint cross section is used to collect the kinematic data of the Dan Cexi joints of 20 healthy adult volunteers. The kinematic data are collected at 0, 15, 30, 60, 90 and 120 degrees under the single leg knee flexion. In the 0 degree model, the axis of the femur (femoralanteroposterioraxis, FAA) is determined and the direction of the axis changes in the position of the knee flexion. On this basis, a comprehensive direction is calculated. The axis of the femur (femoralanteroposterioraxisofmotion, faam), which will keep the minimum square sum of the error of the FAA under each knee angle. We think that faam is an axis that represents the integrated front and rear direction of the femur during the entire dynamic knee flexion. On this basis, faam and several sections define the anatomical parameters on the tibia. The position of the axis is compared, and the relationship between the anatomy and function is established. For these axes, the angle deviations between them and faam are measured. In addition, the relationship between the faam and the tibial tubercle is also focused on the relationship between the position of the tibial tubercle.3, the flexion and extension axis of the knee joint, which is based on the kinematics database of the knee joint of 20 cases established in the last part of the study. We have developed a new algorithm to calculate the FEA. In short, we first transform the three-dimensional model of the femur into a surface point cloud data set; get and track the initial coordinates of each point in the point cloud and the changes in the whole knee flexion, and calculate the cumulative value of the coordinate values in the vertical direction. Then, in the point cloud, the sieves are concentrated. Two points with the smallest cumulative change values are selected at the inner condyle of the femur and the surface of the outer condyle of the femur respectively. Then we define the straight line connecting the two points as fea.. The basic idea of the algorithm is that when the circular rigid body rolls on the plane, the rotation center should always keep the constant distance from the plane, and the point outside the rotation center. On the basis of this, we compare the position relationship between FEA and the two common axis of the distal femur; the two axes include the tea and ca. measurements of the differences in the plane and the three-dimensional space between the FEA, the tea and the CA three, and the distance between the three axes at the surface of the femur condyle. Based on this, the matching degree between tea and FEA and Ca and FEA can be directly compared. Results 1, the biplane X-ray photography and three-dimensional image registration technique established by this study can detect the kinematics of the knee joint effectively and maintain high accuracy. The method is based on the results of the corpse verification experiment. The average deviations of the translational degrees of freedom were 0.80mm, 0.81mm and 0.70mm, respectively, and the average deviations of the rotational degrees of freedom on the coronal, sagittal and cross sections of the three planes were 0.79, 0.88 and 1.06.2 respectively. The kinematic information.Fa of all the volunteers was successfully obtained by the above method. A shows a trend of external rotation during the extension of the position to the knee, reaching the maximum (11.6 degrees) at 90 degrees. No one in the anatomic axis participating in the measurement can be fully matched with the faam. The difference from the angle of the faam from the outer rotation 11 degrees to the internal rotation 9.7 degrees. However, when faam passes through the tibial plateau center, it tends to be with the tibia. The bone nodules intersected in the medial 1/3 part, that is,.3 between the medial margin and the middle 1/3 point. In all the samples, fea. has been successfully calculated from the central region of the posterior femoral condyle. In the two dissection axes (tea and CA), the differences between FEA and tea in the three-dimensional space and the transverse section are higher than FEA and Ca (3.45 degrees vs1.98, P0). .001; cross section: 2.72 degree vs1.19, p=0.002), but there is no significant difference between the two on the coronal plane (1.61 degrees vs0.83, p=0.076). The distance between the three axes on the surface of the femoral condyle and the distance between FEA and tea at the medial surface is significantly higher than that of FEA and Ca (6.7mmvs1.9mm, p0.001), but there is no significant difference between the outer sides (3.2mmvs2.0m,). 1, the biplane X-ray photography and three-dimensional image registration technique established by this study are an effective method to detect the kinematics of the knee joint under the body load condition. It has high accuracy. The deviation of the translational and rotational degrees of freedom can be controlled under 1mm and 1 degrees respectively. For example, optical motion acquisition, MRI and X-ray stereopotrometry, we have achieved a better balance between the usability, accuracy and feasibility of the method, which can meet the needs of.2 in the follow-up experiment. At present, several commonly used axes in the knee joint can not accurately indicate the knee joint in the cross section. In contrast, the latter may have more relevance to the 1/3 parts of the tibial tubercle. The relationship between this function and the anatomy can help us to better understand the physiological functions of the knee joint. Moreover, the discovery may also provide some theoretical support for TKA. This study has provided some evidence for the use of 1/3 in the tibial tubercle as an anatomical reference mark for the rotation of the tibial component.
【學(xué)位授予單位】:第三軍醫(yī)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:R687.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前2條
1 饒根云;脊柱的運(yùn)動(dòng)學(xué)及其臨床意義[J];醫(yī)用生物力學(xué);1996年03期
2 ;[J];;年期
相關(guān)會(huì)議論文 前10條
1 閆彥寧;賈子善;李聰元;王中立;;應(yīng)用運(yùn)動(dòng)學(xué)指導(dǎo)日常生活活動(dòng)訓(xùn)練[A];第四屆全國康復(fù)治療學(xué)術(shù)大會(huì)論文摘要匯編[C];2004年
2 李曉峰;楊冰;古福明;高善芬;周繼和;蔣云飛;梁東梅;;四川省優(yōu)秀女子鏈球運(yùn)動(dòng)員投擲技術(shù)的運(yùn)動(dòng)學(xué)研究[A];第十一屆全國運(yùn)動(dòng)生物力學(xué)學(xué)術(shù)交流大會(huì)論文匯編(摘要)[C];2006年
3 張?zhí)页?董海軍;郝勇霞;;對(duì)我國優(yōu)秀女子鏈球選手投擲技術(shù)的整體節(jié)奏和髖膝特征的運(yùn)動(dòng)學(xué)研究[A];中華人民共和國第十屆運(yùn)動(dòng)會(huì)科學(xué)大會(huì)論文摘要匯編[C];2005年
4 沈文文;李建設(shè);顧耀東;;青年女性被動(dòng)提踵時(shí)慢跑的下肢運(yùn)動(dòng)學(xué)研究[A];第十六屆全國運(yùn)動(dòng)生物力學(xué)學(xué)術(shù)交流大會(huì)(CABS 2013)論文集[C];2013年
5 紀(jì)仲秋;余鋒;李旭龍;;我國女子20km競走技術(shù)的運(yùn)動(dòng)學(xué)研究[A];第十五屆全國運(yùn)動(dòng)生物力學(xué)學(xué)術(shù)交流大會(huì)(CABS2012)論文摘要匯編[C];2012年
6 薛繼升;李彬;;備戰(zhàn)2008奧運(yùn)會(huì)馬拉松項(xiàng)目的運(yùn)動(dòng)學(xué)研究[A];第八屆全國體育科學(xué)大會(huì)論文摘要匯編(二)[C];2007年
7 劉永智;危小焰;;不同負(fù)重條件下行走的能耗差異的運(yùn)動(dòng)學(xué)研究[A];第九屆全國體育科學(xué)大會(huì)論文摘要匯編(2)[C];2011年
8 劉卉;;上肢鞭打動(dòng)作技術(shù)原理的運(yùn)動(dòng)學(xué)研究[A];第十屆全國運(yùn)動(dòng)生物力學(xué)學(xué)術(shù)交流大會(huì)論文匯編[C];2002年
9 高躍文;;不同拉射姿勢對(duì)曲棍球短角球成功率的運(yùn)動(dòng)學(xué)研究[A];2013年全國競技體育科學(xué)論文報(bào)告會(huì)論文摘要集[C];2013年
10 張?zhí)页?孫為民;;對(duì)我國優(yōu)秀女子鏈球選手技術(shù)的整體節(jié)奏和髖膝特征的運(yùn)動(dòng)學(xué)研究[A];中國體育科學(xué)學(xué)會(huì)運(yùn)動(dòng)訓(xùn)練學(xué)分會(huì)第五屆全國田徑運(yùn)動(dòng)發(fā)展研究成果交流會(huì)論文集[C];2012年
相關(guān)博士學(xué)位論文 前1條
1 尹力;基于運(yùn)動(dòng)學(xué)分析的膝關(guān)節(jié)動(dòng)態(tài)旋轉(zhuǎn)對(duì)位與屈伸軸線的研究[D];第三軍醫(yī)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前2條
1 孫路;基于運(yùn)動(dòng)學(xué)的蛋白質(zhì)LOOP結(jié)構(gòu)預(yù)測[D];蘇州大學(xué);2013年
2 孫群;跆拳道后旋踢動(dòng)作運(yùn)動(dòng)學(xué)分析研究[D];牡丹江師范學(xué)院;2014年
,本文編號(hào):2000087
本文鏈接:http://www.sikaile.net/yixuelunwen/waikelunwen/2000087.html