表面纖溶系統(tǒng)的機理研究及其在冠脈支架表面的構建
[Abstract]:In recent years, blood contact materials have developed rapidly in the clinical treatment of cardiovascular diseases. However, as allograft material, the problem of thrombus caused by implantation of human body has not been properly resolved. A large number of studies have shown that any allograft material will inevitably lead to a clotting response when contacted with blood. Therefore, some researchers have attempted to provide the material with the ability to dissolve the primary thrombus block by simulating a human fibrinolysis system on the surface of the material through a reasonable design. The construction of the surface fiber-soluble system provides a brand-new idea for the realization of the anti-thrombotic material in real sense. the key to constructing a surface fiber-soluble system is to enable the material to selectively bind to the fibrinolytic system core protein _ plasminogen (plg) and its activator (e. g., tissue-type plasminogen activator (t-pa)) from the blood, The fibrinolysis enzyme with degradation of fibrin activity is generated by the interaction between the two, and the dissolution of the primary thrombus is realized. At present, it is generally believed that the free lysine (cos-lysine) of glucosamine-amino group and poly-lysine has a specific affinity for Plg and t-PA, and therefore, the immobilization of poly-lysine on the surface of the material will be possible to achieve the construction of a surface fiber-soluble system. Based on the above analysis, the main work of this paper is to introduce poly-lysine into the surface of the material, realize the construction of the surface fiber-soluble system, and try to explain its function from the protein level. Mechanism. On the basis of this, the concept of the surface is applied to the coronary artery stent, which realizes the surface of the surface fiber-soluble system on the surface of the cardiovascular implant material. Construction. Specific research content The model gold surface modified with poly-lysine and poly-lysine was first prepared, and the relationship between them and Plg was studied systematically. The interaction is carried out by the method of self-assembly of the dipeptides of the dipeptide molecules, i.e., CK1 and CK2-NH2-Lys (CK2), in the model gold. Surface fixation. Use of water contact angle and thickness test to test the properties of the modified surface By enzyme-linked immunosorbent assay (ELISA), the adsorption of Plg in plasma on two lysine surfaces was compared. Selective binding. Plg of Plg at different concentrations were examined by surface plasmon resonance (SPR) on two lysine surfaces The results showed that P-lysine surface had a higher binding rate constant and lower dissociation rate constant for Plg, and its affinity constant was 15 times higher than that of the L-lysine surface. The affinity of the opposite sex. Using the fibrinolytic enzyme activity test, it is proved that the Plg of the bound-lysine surface has higher fiber solubility. The enzyme transformation activity was confirmed by the simplest surface design. The key structure of fiber-soluble surface was confirmed by the study, and the preparation of the functional material was provided. A theoretical basis is provided. Next, Plg-lysine immobilized on the surface of the coronary stent is immobilized on the surface of the coronary stent, so that the surface of the vascular implant material is constructed on the surface of the surface fiber-soluble system, and the blood compatibility of the surface fiber-soluble system is compatible with the surface of the coronary stent. A systematic study was carried out. 2-hydroxyethyl methacrylate (HEMA) was polymerized on the surface of L605-drilled chromium alloy stent using surface-initiated atom transfer free radical polymerization. MA) The end of the inside chain. It was confirmed by X-ray photoelectron spectroscopy. The success of the modification process. The isotope labeled fibrinogen and albumin adsorption test showed that HEMA modified L605 table had the ability to repel non-specific protein adsorption, and asked the ELISA test to test the L605 table modified by HEMA-Lys to be selected from plasma. The plasma complex calcification test demonstrated that Pig, which binds to the lysine surface, can effectively dissolve fibrin clots in plasma after t-PA activation, and that the fibrinolysis capacity has certain stability and stability, that is, it can be moved by Plg on the surface. the state exchange maintains its activity, The study provides a new way to solve the problem of thrombosis in the stent, and also provides a clinical application for the surface of the fiber.
【學位授予單位】:武漢理工大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:R318.08
【相似文獻】
相關期刊論文 前10條
1 楊慧敏,李振彪,郭春燕,韋俊,朱立紅,朱月秋;小兒原發(fā)性腎病綜合征纖溶系統(tǒng)酶的活性變化[J];醫(yī)學綜述;1998年09期
2 詹三華;宋玉麗;百宏燦;季燕;張魯峰;;巴曲酶對急性腦梗死患者D-二聚體的動態(tài)影響及意義[J];中原醫(yī)刊;2006年05期
3 任愛平楊;葉葉陽;;不穩(wěn)定型心絞痛患者冠脈循環(huán)中凝血纖溶的變化[J];包頭醫(yī)學院學報;2007年06期
4 杜貴勝;;顱腦損傷患者凝血、纖溶系統(tǒng)變化規(guī)律研究[J];現(xiàn)代預防醫(yī)學;2011年16期
5 王景明;;血管緊張素轉換酶基因多態(tài)性與纖溶系統(tǒng)的關系[J];中國實用醫(yī)藥;2011年22期
6 黃惠民,張偉忠,丁文祥,蘇肇伉,徐德勤,邱麗君,應春梅;抑肽酶對血小板粘附功能保護作用的實驗研究[J];上海第二醫(yī)科大學學報;1991年03期
7 朱廣瑾;纖溶系統(tǒng)與心、肺血管疾病[J];基礎醫(yī)學與臨床;1992年04期
8 黃其通;流行性出血熱凝血、抗凝血及纖溶系統(tǒng)指標變化的動態(tài)監(jiān)測[J];臨床內科雜志;1992年05期
9 孫勇,李強,王建安;前列腺素E_1對急性冠脈綜合征介入治療圍術期纖溶系統(tǒng)的影響[J];中華急診醫(yī)學雜志;2003年10期
10 唐小龍,江振友,蔡淑玉,張榮波,林晨;血管內皮細胞在DHF/DSS中對凝血和纖溶系統(tǒng)的異常調控[J];熱帶病與寄生蟲學;2005年01期
相關會議論文 前10條
1 辛曉敏;關秀茹;李潔;王琳琳;孫蕾;;急性腦梗塞溶栓治療對凝血及纖溶系統(tǒng)的影響[A];西部大開發(fā) 科教先行與可持續(xù)發(fā)展——中國科協(xié)2000年學術年會文集[C];2000年
2 謝襯梨;蕭正倫;黎毅敏;莫紅纓;趙一菊;;生長素釋放肽對急性肺損傷小鼠核因子-κB和纖溶系統(tǒng)的干預作用[A];第三屆重癥醫(yī)學大會論文匯編[C];2009年
3 李寧川;;不同強度的運動訓練對凝血及纖溶系統(tǒng)的影響[A];2002年第9屆全國運動醫(yī)學學術會議論文摘要匯編[C];2002年
4 王風紅;歐東仁;翟云玲;;急性腦梗死患者凝血、抗凝及纖溶功能的臨床研究[A];淄博市第十一屆自然科學優(yōu)秀學術成果論文集[C];2008年
5 歐陽淑娟;侯波;白麗萍;;腎母細胞瘤血小板、凝血系統(tǒng)、抗凝血、纖溶系統(tǒng)功能狀態(tài)及其相關[A];2000全國腫瘤學術大會論文集[C];2000年
6 李欣志;尚曉泓;劉建勛;;重組納豆激酶重復給藥對Beagle犬凝血和纖溶系統(tǒng)的影響[A];中國藥理學會毒理專業(yè)委員會第十次學術會議論文摘要匯編[C];2004年
7 王成濤;趙磊;楊雪蓮;李小東;;飼喂纖溶豆豉對小鼠溶栓效果的研究[A];中國食品科學技術學會第八屆年會暨第六屆東西方食品業(yè)高層論壇論文摘要集[C];2011年
8 李利紅;陳世倫;陳文明;;腫瘤病人凝血、纖溶系統(tǒng)的變化[A];第三屆全國血液免疫學學術大會論文集[C];2003年
9 王威;高春錦;葛環(huán);武連華;楊琳;;高壓氧對缺血性腦卒中患者凝血-纖溶系統(tǒng)的影響[A];中華醫(yī)學會第十五次全國高壓氧醫(yī)學學術會議論文匯編[C];2006年
10 宋光太;胡居恒;徐達根;;顱腦損傷后凝血系統(tǒng)與纖溶系統(tǒng)異常改變的臨床研究[A];2005年浙江省神經外科學術會議論文匯編[C];2005年
相關重要報紙文章 前10條
1 楊陽;全自動血凝儀[N];農村醫(yī)藥報(漢);2008年
2 劉建華 馬戌平;治療豬副嗜血桿菌病首選藥———萬福林[N];中國畜牧獸醫(yī)報;2006年
3 倪業(yè)鋒;疏血通注射液作用機理及安全性研究[N];健康報;2007年
4 杜欣;丹芪療法治療腱鞘炎[N];醫(yī)藥養(yǎng)生保健報;2006年
5 景在平;三大人群易發(fā)下肢深靜脈血栓[N];健康報;2005年
6 靖九江;腎臟疾病與血栓關系密切[N];中國醫(yī)藥報;2006年
7 郭志力;脈絡寧注射液藥理學研究[N];中國醫(yī)藥報;2003年
8 青云;低分子量肝素藥效學進展[N];中國醫(yī)藥報;2003年
9 青鋒;應用抑肽酶須防副作用[N];醫(yī)藥經濟報;2001年
10 北京大學關節(jié)病研究所教授 呂厚山 鐘雯整理;人工關節(jié)術后注意防血栓[N];健康報;2009年
相關博士學位論文 前10條
1 張抒揚;纖溶系統(tǒng)與急性心肌梗塞[D];中國協(xié)和醫(yī)科大學;1991年
2 楊倩;冠心病患者尿激酶型纖溶酶原激活物受體(uPAR)與黏附分子CD11b/CD18表達水平及對單核細胞黏附功能影響研究[D];中國協(xié)和醫(yī)科大學;2008年
3 董寧征;纖溶系統(tǒng)的調控及溶栓劑的分子生物學研究[D];蘇州大學;2002年
4 陳未;尿激酶型纖溶酶原激活物受體(uPAR)的致動脈粥樣硬化作用和機制研究[D];中國協(xié)和醫(yī)科大學;2006年
5 昌克勤;大劑量烏司他丁在兔常溫體外循環(huán)中對凝血和纖溶系統(tǒng)的影響[D];中國協(xié)和醫(yī)科大學;2006年
6 張振;紫紺型先天性心臟病凝血機制異常的研究[D];南方醫(yī)科大學;2009年
7 尹晶;溫陽益心活血化痰法對冠心病大鼠纖溶系統(tǒng)的影響[D];黑龍江中醫(yī)藥大學;2006年
8 袁恒杰;無創(chuàng)性延遲肢體缺血預適應對大鼠腦缺血再灌注損傷保護作用的研究[D];天津醫(yī)科大學;2009年
9 司全金;雄激素水平變化對血液凝血和纖溶系統(tǒng)的影響[D];中國人民解放軍軍醫(yī)進修學院;2004年
10 李曉冬;TNFα或mmLDL對血管內皮細胞PAI-1基因表達的影響及其分子機制探討[D];中國協(xié)和醫(yī)科大學;2002年
相關碩士學位論文 前10條
1 劉鈞菲;不同病程過敏性紫癜抗凝纖溶系統(tǒng)標志物的變化與分析[D];鄭州大學;2012年
2 王莎莎;表面纖溶系統(tǒng)的機理研究及其在冠脈支架表面的構建[D];武漢理工大學;2012年
3 鄒浩;腹腔鏡結直腸癌根治術對血管內皮細胞損傷及機體凝血—纖溶系統(tǒng)的影響[D];青島大學;2011年
4 張勤;非對稱性二甲基精氨酸對血管內皮纖溶系統(tǒng)的調節(jié)及其細胞內機制[D];汕頭大學;2010年
5 周冬梅;多囊卵巢綜合征患者的胰島素抵抗與纖溶系統(tǒng)的相關性研究[D];蘇州大學;2007年
6 孫小強;銀屑病患者血管內皮及凝血、抗凝血功能改變的研究[D];天津醫(yī)科大學;2008年
7 施靜靜;腦梗死患者顱內大動脈粥樣硬化性狹窄支架置入術與凝血—纖溶指標檢測[D];南方醫(yī)科大學;2009年
8 陳棟;體育鍛煉對老年人纖溶系統(tǒng)的影響[D];江西師范大學;2003年
9 許廷斌;睪酮與男性頸動脈內膜—中層厚度的相關性研究[D];青島大學;2008年
10 王欣;CO_2氣腹腹腔鏡手術對凝血/纖溶系統(tǒng)的影響[D];河北醫(yī)科大學;2008年
,本文編號:2311475
本文鏈接:http://www.sikaile.net/yixuelunwen/swyx/2311475.html