心肌電信號的元胞自動機建模及研究
[Abstract]:The transmission of information in the heart exists in the form of electrical signals. A normal cardiac electrical signal presents a traveling wave state, and the spiral state of the electrical signal is a possible cause of arrhythmia. Once the spiral wave state breaks into the spatiotemporal chaos, it can cause cardiac tremor and cause sudden death. Therefore, the research of the signal of the heart is a hot spot in cardiology. The test method is the main means to study the cardiac signal. It is intuitive and reliable, but it is easy to damage the experimental object, it is difficult to repeat, the cost is high, and the other factors are difficult to exclude the influence of specific factors. The numerical simulation method can effectively make up the shortage of experimental methods, so it has become an important auxiliary means to study the cardiac electrical signal. Cellular automata is a highly efficient and simple numerical simulation method, in which the Greenberg-Hastings cellular automaton model is the simplest model of the excitation medium cellular automata. Many studies have proved that the cellular automaton can reflect the dynamic behavior of the excitable medium, such as the heart. Numerical simulation of electrical signals, including the study of the mechanical deformation of slice, the effect of two factors on the cell memory effect on the evolution of spiral wave, the production and persistence of electrocardiogram. The contents and results of this paper are as follows: firstly, the mechanical mechanism of myocardial tissue is considered on the basis of the Greenberg-Hastings cellular automata model. The effect of the mechanical deformation of the myocardial slices on the dynamic behavior of the spiral wave is studied. The numerical simulation results show that the spiral waves roam but do not break under the physiological mechanical deformation under the physiological mechanical deformation. The spiral waves will continue to roam and disappear after the pathological mechanical deformation. The effect of the amplitude change rate and the change of angular frequency on the dynamic behavior of the spiral wave is compared with the change of the amplitude of the mechanical deformation. It is found that the amplitude change rate of the mechanical deformation has a great influence on the spiral wave, and the angular frequency of the mechanical deformation has little influence on the spiral wave. In combination with the numerical simulation results, the athletes are used in the paper. Two, a cellular automaton model, which can reflect the conduction memory of the cardiac myocytes, can reflect the conduction velocity of the myocardial cell cycle on the electrical signal. This model can not only simulate the production and maintenance of the stable spiral waves in the myocardial tissue, but also reappear the Doppler instability of the spiral wave, the instability of the IKE Moorhouse and the simultaneous occurrence of these two kinds of instability. These instability phenomena are not produced by the traditional Greenberg-Hastings cellular automata. The results of this work In order to further use cellular automata to explore the influence of cardiac muscle cell conduction memory on the dynamics of spiral wave dynamics, three, an electrocardiogram cellular automaton model including atrial, ventricular, atrioventricular space, ventricular septum and stratified structure of ventricular muscle was established, and the electrical signal was simulated by the model. The field potential trend in normal and ischemic conditions is calculated. The numerical results show that, under normal circumstances, the simulated field potential shows the P wave, QRS wave group, T wave and J wave in accordance with the standard electrocardiogram; the phenomenon of T wave inversion occurs under the ischemia of the endocardial myocytes; under the condition of the ischemia of the epicardial myocytes, The T wave becomes high; in the case of transmural ischemia, the T wave is formed in advance. The trend of the field potential in the normal and abnormal conditions is compared with the clinical results, and the formation and persistence mechanism is analyzed. This work can clarify the relationship between the electrocardiogram and the electrical activity of the cardiac myocytes, and discuss the production and continuous mechanism of the electrocardiogram. For reference.
【學位授予單位】:廣西師范大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R318.0;TP301.1
【相似文獻】
中國期刊全文數據庫 前7條
1 董旭;黃洪洲;方友嘉;俞融鋒;;元胞自動機模擬物種生態(tài)策略選擇的研究[J];現代生物醫(yī)學進展;2006年11期
2 甘瑞靜;黃代政;;甲型H1N1流感傳播的元胞自動機模型初探[J];基層醫(yī)學論壇;2011年16期
3 黃英輝;李立奇;何婷;羅萬春;;元胞自動機算法在醫(yī)院體檢排隊中的應用[J];解放軍醫(yī)院管理雜志;2008年11期
4 賀明峰;鄧成瑞;;基于元胞自動機的SARS傳播模型[J];數學的實踐與認識;2008年03期
5 李璐;宣慧玉;高寶俊;;基于元胞自動機的異質個體HIV/AIDS傳播模型[J];系統(tǒng)管理學報;2008年06期
6 陜振沛;寧寶權;郭亞丹;;采用元胞自動機的甲型H1N1流感傳播模型研究[J];六盤水師范學院學報;2013年02期
7 潘志方;楊峰;沈琴曉;;基于元胞自動機的艾滋病傳播模型研究[J];生物醫(yī)學工程學雜志;2011年03期
中國重要會議論文全文數據庫 前10條
1 劉碧川;吳秋軒;;零邊界條件下二維元胞自動機矩陣可逆性分析[A];浙江省信號處理學會2012學術年會論文集[C];2012年
2 陳軍華;趙凜;張星臣;;基于元胞自動機理論的交通流模擬研究進展[A];第10屆計算機模擬與信息技術會議論文集[C];2005年
3 應尚軍;魏一鳴;蔡嗣經;;元胞自動機及其在經濟學中的應用[A];面向復雜系統(tǒng)的管理理論與信息系統(tǒng)技術學術會議專輯[C];2000年
4 田歡歡;薛郁;;考慮行人占據影響的元胞自動機疏散模型[A];中國力學大會——2013論文摘要集[C];2013年
5 鄧方;陳杰;陳文頡;朱琳;;元胞自動機及其在兵力推演中的建模與仿真[A];第二十六屆中國控制會議論文集[C];2007年
6 鞏小波;李志鵬;劉允才;;基于元胞自動機的城市道路仿真系統(tǒng)[A];可持續(xù)發(fā)展的中國交通——2005全國博士生學術論壇(交通運輸工程學科)論文集(下冊)[C];2005年
7 周濤;周佩玲;汪秉宏;楊春霞;蔡世民;;元胞自動機用于金融市場建模[A];全國復雜系統(tǒng)研究論壇論文集(二)[C];2005年
8 羅平;;元胞自動機的地理過程模擬機制及擴展應用[A];中國地理學會2004年學術年會暨海峽兩岸地理學術研討會論文摘要集[C];2004年
9 暢春玲;張運杰;于東;董云影;;建立在模糊邏輯上的模糊元胞自動機[A];第12屆全國模糊系統(tǒng)與模糊數學學術年會論文集[C];2004年
10 劉亞敏;徐建良;;面向對象的元胞自動機疾病傳播時空建模方法研究[A];第二十一屆中國數據庫學術會議論文集(技術報告篇)[C];2004年
中國博士學位論文全文數據庫 前10條
1 蔣雪玲;基于元胞自動機的機械車間緊急疏散建模研究[D];貴州大學;2015年
2 張星;多層元胞自動機加密算法的研究與實現[D];南京理工大學;2016年
3 平萍;元胞自動機原理及其在密碼學的應用研究[D];南京理工大學;2009年
4 秦大康;元胞自動機生成的時間序列的復雜性研究[D];蘇州大學;2005年
5 江志松;元胞自動機的語法復雜性[D];蘇州大學;2001年
6 曹興芹;復雜系統(tǒng)的元胞自動機方法研究[D];華中科技大學;2006年
7 丁競淵;金融復雜系統(tǒng)建模及動力學機制研究[D];上海大學;2011年
8 柯姜岑;基于元胞自動機的水運樞紐運輸組織研究[D];武漢理工大學;2012年
9 朱諾;基于視頻檢測和元胞自動機的人群疏散機理研究[D];北京交通大學;2012年
10 趙道亮;緊急條件下人員疏散特殊行為的元胞自動機模擬[D];中國科學技術大學;2007年
中國碩士學位論文全文數據庫 前10條
1 翟瑩;關于二維170規(guī)則元胞自動機的研究[D];廣西師范大學;2006年
2 Maikel Issermann;基于元胞自動機和流動成本場的高效降雨徑流模型[D];清華大學;2014年
3 蒲昕;基于元胞自動機的道路瓶頸交通流的研究[D];長安大學;2015年
4 曹韋華;基于元胞自動機的兩輪車流建模與仿真[D];江西理工大學;2015年
5 安寧;基于元胞自動機的無線傳感器網絡節(jié)能路由協(xié)議的研究[D];電子科技大學;2014年
6 李意芬;基于元胞自動機的城市道路偶發(fā)性擁堵時交通行為模擬[D];長沙理工大學;2014年
7 劉敏;Cu-Co合金液—液相變過程的元胞自動機模擬[D];東北大學;2014年
8 金龍;駕駛心態(tài)與無信號十字交叉口通暢性的元胞自動機仿真研究[D];蘭州交通大學;2015年
9 張澤森;基于元胞自動機的多代產品擴散研究[D];廣西師范大學;2015年
10 王先明;基于元胞自動機的軌道交通建模及仿真分析[D];西南交通大學;2016年
,本文編號:2136452
本文鏈接:http://www.sikaile.net/yixuelunwen/swyx/2136452.html