心房顫動信號處理及社區(qū)心臟病人監(jiān)護系統(tǒng)研制
發(fā)布時間:2018-07-17 21:23
【摘要】:目前,房顫(Atrial Fibrillation,AF)信號提取算法大部分是針對多導聯(lián)心電圖(Electrocardiogram,ECG),而多導聯(lián)采集在心電監(jiān)護中移動性不強,單導聯(lián)監(jiān)護系統(tǒng)由于靈活方便,將成為未來“可移動化”的房顫監(jiān)護系統(tǒng)的發(fā)展趨勢。本文主要研究了單導聯(lián)房顫信號提取、房顫類型分類和開發(fā)了遠程心電自動監(jiān)護診斷系統(tǒng)。 從單導聯(lián)提取房顫信號的現(xiàn)有方法精度受心電波形形態(tài)以及噪聲的影響較為嚴重,方法的魯棒性較差。鑒于此,本文提出了一種新的單導聯(lián)房顫信號提取方法。新方法利用房顫信號在時間上的非平穩(wěn)性,把單導聯(lián)ECG進行擴維(分段),然后再利用盲源提取算法進行房顫信號的提取。實驗結(jié)果表明,新方法能夠很好地從單導聯(lián)ECG中提取房顫信號,計算時間較短,具有應用于實時無線房顫監(jiān)護系統(tǒng)的前景。 在提取房顫信號的基礎上,為了加深對房顫自發(fā)終止機制的進一步理解,改善對持續(xù)性房顫的治療,本文還對陣發(fā)性和持續(xù)性房顫的分類進行了研究。本文采用主成分分析從單導聯(lián)心電信號中提取出房顫信號,選擇和計算出房顫信號的特征,,最后用分類器對陣發(fā)性和持續(xù)性房顫進行了分類。本文首次用復雜度去表征了房顫波波動復雜度的特征。實驗結(jié)果表明,預測的總正確率是90%。在1000次隨機性實驗中,最高分類正確率可達到92%,平均正確率為77.12%。該方法可以用來很好地分類兩種房顫,對房顫自發(fā)性終止的預判有一定的指導意義。 最后,本文研究和開發(fā)了遠程心電自動監(jiān)護診斷系統(tǒng),其主要內(nèi)容包括心電Q、R、S、P、T特征波的檢測、數(shù)據(jù)波形顯示、客戶端和服務端的心電數(shù)據(jù)的實時通信、數(shù)據(jù)庫管理以及病人的病例管理系統(tǒng)等。這項工作在社區(qū)化醫(yī)療系統(tǒng)中具有一定應用價值。
[Abstract]:At present , most of the extraction algorithms of atrial fibrillation ( AF ) signal are directed to multi - lead electrocardiogram ( ECG ) , while multi - lead monitoring is not very mobile in ECG monitoring . Because of its flexibility and convenience , the single - lead monitoring system will become the development trend of the future " mobile " atrial fibrillation monitoring system . This paper mainly studies the extraction of single - lead AF signal , the classification of AF type and the development of remote ECG monitoring and diagnosis system .
This paper presents a new method for extracting atrial fibrillation signal from single lead ECG . The results show that the new method can extract the atrial fibrillation signal from single lead ECG well , and the calculation time is short , which has the prospect of applying to real - time wireless AF monitoring system .
In order to deepen the understanding of AF self - termination mechanism and improve the treatment of persistent AF , this paper studies the classification of paroxysmal and persistent AF by analyzing the characteristics of atrial fibrillation signal by means of principal component analysis . The results show that the total accuracy rate is 92 % and the average accuracy is 77.12 % . The method can be used to classify the two kinds of atrial fibrillation well , and has certain guiding significance for the pre - determination of spontaneous termination of atrial fibrillation .
Finally , the remote ECG monitoring and diagnosis system is studied and developed in this paper . The main contents include the detection of ECG Q , R , S , P , T characteristic wave , data waveform display , real - time communication of ECG data of client and server , database management and patient ' s case management system . This work has certain application value in community medical system .
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:R318.6
本文編號:2130978
[Abstract]:At present , most of the extraction algorithms of atrial fibrillation ( AF ) signal are directed to multi - lead electrocardiogram ( ECG ) , while multi - lead monitoring is not very mobile in ECG monitoring . Because of its flexibility and convenience , the single - lead monitoring system will become the development trend of the future " mobile " atrial fibrillation monitoring system . This paper mainly studies the extraction of single - lead AF signal , the classification of AF type and the development of remote ECG monitoring and diagnosis system .
This paper presents a new method for extracting atrial fibrillation signal from single lead ECG . The results show that the new method can extract the atrial fibrillation signal from single lead ECG well , and the calculation time is short , which has the prospect of applying to real - time wireless AF monitoring system .
In order to deepen the understanding of AF self - termination mechanism and improve the treatment of persistent AF , this paper studies the classification of paroxysmal and persistent AF by analyzing the characteristics of atrial fibrillation signal by means of principal component analysis . The results show that the total accuracy rate is 92 % and the average accuracy is 77.12 % . The method can be used to classify the two kinds of atrial fibrillation well , and has certain guiding significance for the pre - determination of spontaneous termination of atrial fibrillation .
Finally , the remote ECG monitoring and diagnosis system is studied and developed in this paper . The main contents include the detection of ECG Q , R , S , P , T characteristic wave , data waveform display , real - time communication of ECG data of client and server , database management and patient ' s case management system . This work has certain application value in community medical system .
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:R318.6
【參考文獻】
相關期刊論文 前8條
1 林天毅,段會龍,呂維雪;遠程醫(yī)療信息系統(tǒng)的應用及相關問題[J];國外醫(yī)學.生物醫(yī)學工程分冊;1998年04期
2 李延軍;嚴洪;趙偉;;基于能量變換與小波分解的QRS波群檢測算法[J];航天醫(yī)學與醫(yī)學工程;2009年03期
3 顧文軍,冉峰,徐美華,龐峰;小波變換用于檢測R波[J];上海大學學報(自然科學版);2003年04期
4 李延軍;嚴洪;;QRS波群檢測常用算法的比較[J];生物醫(yī)學工程學進展;2008年02期
5 黃忠朝;趙于前;;混合時頻方法及體表ECG房顫特征研究[J];生物醫(yī)學工程學雜志;2008年06期
6 陳柯萍,陳新;心房顫動的命名和分類[J];中華心律失常學雜志;2003年04期
7 孫榮榮;汪源源;;基于RR間期的非線性特征預測房顫終止[J];中國生物醫(yī)學工程學報;2008年02期
8 程小明,林金森,張正國;高分辨心電圖中模板匹配算法的改進[J];中國生物醫(yī)學工程學報;1999年01期
相關博士學位論文 前2條
1 蘇麗;遠程心電監(jiān)護診斷系統(tǒng)心電信號處理方法研究[D];哈爾濱工程大學;2006年
2 王剛;房顫信號處理及其臨床應用的研究[D];電子科技大學;2008年
相關碩士學位論文 前1條
1 洪瑋;ECG波形分類算法研究[D];浙江大學;2001年
本文編號:2130978
本文鏈接:http://www.sikaile.net/yixuelunwen/swyx/2130978.html