不同材料屬性分配方法對(duì)椎體有限元模型力學(xué)性能的影響
本文選題:有限元分析 + 脊柱 ; 參考:《南方醫(yī)科大學(xué)》2013年碩士論文
【摘要】:背景: 數(shù)字醫(yī)學(xué)概念的提出促進(jìn)了有限元技術(shù)與醫(yī)學(xué)的結(jié)合,CT數(shù)據(jù)集在三維重建方面的廣泛應(yīng)用更加快了這一進(jìn)程的發(fā)展,尤其是在骨骼模型的構(gòu)建方面顯得特別突出。三維有限元模型可以用于正常骨骼的應(yīng)力應(yīng)變分析,也可用于分析其發(fā)生骨折的危險(xiǎn)系數(shù)或內(nèi)固定物的微動(dòng)情況。在國(guó)外,O'Reilly和Whyn, Schmidt等,Little等,Schileo等,Yosibash等對(duì)脊柱和股骨等部位進(jìn)行了相關(guān)的研究。在國(guó)內(nèi)有限元方面研究也逐漸加深,特別是數(shù)字醫(yī)學(xué)概念的提出更是把有限元技術(shù)與醫(yī)學(xué)方面結(jié)合起來(lái)。很多學(xué)者在有限元仿真等領(lǐng)域做出相應(yīng)的研究。 有限元建模是指建立一個(gè)可以由計(jì)算機(jī)順利計(jì)算的數(shù)字模型,該模型要和現(xiàn)實(shí)中物理模型的力學(xué)性能相一致,其實(shí)質(zhì)是用有限元方法在計(jì)算機(jī)的虛擬環(huán)境中建立一個(gè)數(shù)字模型,這個(gè)模型有以下要求:一,要保證力學(xué)的完整性;二:要保證計(jì)算的有效性。即建立的有限元模型有兩個(gè)使命,對(duì)上要承載完整的力學(xué)信息,對(duì)下要保證計(jì)算機(jī)可以快速準(zhǔn)確的計(jì)算。在建立有限元模型的過(guò)程中既要保證所建模型外形與現(xiàn)實(shí)相近,也要使模型的一些力學(xué)材料性能與真實(shí)情況盡量相符。Marom等認(rèn)為CT掃描可以反映出骨骼模型的高特征性。CT掃描作為一種臨床常規(guī)體外非侵入性的診斷方法,它不僅可以提供骨骼精確的幾何學(xué)信息,更可以提供骨骼相關(guān)的機(jī)械性能參數(shù)。現(xiàn)階段,CT數(shù)據(jù)在有限元領(lǐng)域的最主要用途在于骨骼三維模型構(gòu)建,而對(duì)于有限元模型構(gòu)建的另一個(gè)重要組成部分:材料屬性賦值,卻甚少涉及。骨骼是醫(yī)學(xué)有限元分析的主要對(duì)象之一,人骨的材料屬性更是十分復(fù)雜的,個(gè)體差異明顯,不同人或同一人體不同部位之間都存在差別。傳統(tǒng)的骨骼材料屬性劃分方法是將骨單純分為皮質(zhì)骨和松質(zhì)骨兩部分進(jìn)行賦值,這樣劃分必然與人骨材料屬性復(fù)雜性不符,在計(jì)算中不免會(huì)出現(xiàn)較大誤差。隨著人們對(duì)CT數(shù)據(jù)認(rèn)識(shí)的加深和相應(yīng)軟件的開(kāi)發(fā)運(yùn)用,逐漸開(kāi)發(fā)出的一類(lèi)軟件如MIMICS, BONEMAT, AMAB等,這些軟件可以把CT數(shù)據(jù)作為一種內(nèi)部的數(shù)據(jù)代碼與有限元仿真模型相結(jié)合,其分配方案是根據(jù)CT數(shù)據(jù)的灰度值來(lái)決定有限元模型的材料屬性的,具體方法是通過(guò)提取出單元體積內(nèi)所有CT圖像的像素值,并計(jì)算出其平均值來(lái)賦予到該單元中。這種方法可以最終達(dá)到通過(guò)CT灰度值確定有限元模型中每個(gè)單元彈性模量的目的。 醫(yī)學(xué)圖像的三維重建及可視化技術(shù)是一種運(yùn)用計(jì)算機(jī)圖形學(xué)、圖像處理、計(jì)算機(jī)視覺(jué)以及人機(jī)交互技術(shù)將醫(yī)學(xué)圖像數(shù)據(jù)轉(zhuǎn)換為圖形或圖像在屏幕上顯示出來(lái),并進(jìn)行交互處理的理論、方法和技術(shù)。MIMICS是Materialise公司研發(fā)的交互式的醫(yī)學(xué)影像控制系統(tǒng)(Materialise's interactive medical image control system),是一套高度整合而且易用的3D圖像生成及編輯處理軟件,它能輸入各種醫(yī)學(xué)影像(CT、MRI)數(shù)據(jù),建立3D模型進(jìn)行編輯,在PC機(jī)上進(jìn)行大規(guī)模數(shù)據(jù)的轉(zhuǎn)換處理。該軟件除了可以運(yùn)用于構(gòu)建3D模型,更可以將CT灰度值與模型的材料屬性聯(lián)系起來(lái),按照一定的劃分梯度對(duì)模型的材料屬性進(jìn)行賦值。一個(gè)較好的賦值方法,配合一個(gè)較好的分配方案,可以改善計(jì)算中因個(gè)體差異造成的誤差。本實(shí)驗(yàn)就是在MIMICS軟件的基礎(chǔ)上在完成較好的幾何重建的前提下,運(yùn)用其材料屬性分配模塊對(duì)模型的彈性模量按照不同分配梯度進(jìn)行賦值,并將這些賦值后模型的有限元分析結(jié)果進(jìn)行比較,再將其與手動(dòng)賦值方法模型有限元結(jié)果比較,得出較好的賦值方法。通過(guò)研究?jī)煞N賦值方法(CT灰度值賦值法、手動(dòng)賦值法)及CT灰度值賦值法中不同梯度變化對(duì)有限元分析結(jié)果的影響,得出一個(gè)相對(duì)經(jīng)濟(jì)、準(zhǔn)確的劃分梯度,為將該法在有限元研究中的應(yīng)用特別是臨床相關(guān)快速建模分析等方面提供相關(guān)的理論依據(jù)。 椎骨有限元建模 本部分內(nèi)容重點(diǎn)對(duì)課題實(shí)施的前期建模工作進(jìn)行歸納總結(jié),闡述了相關(guān)的方法和技術(shù),細(xì)致的說(shuō)明了本實(shí)驗(yàn)進(jìn)行有效建模的全過(guò)程。有限元分析是近年來(lái)在生物力學(xué)領(lǐng)域仿真人體結(jié)構(gòu)力學(xué)功能的一個(gè)重要實(shí)驗(yàn)手段。通過(guò)建立人體有限元分析模型,賦予模型相應(yīng)的材料屬性并合理模擬在體條件,可以有效地分析人體結(jié)構(gòu)的物理性質(zhì)。其中,建立有限元幾何模型是有限元仿真分析的基礎(chǔ),其目的就在于為進(jìn)一步的有限元分析過(guò)程提供一個(gè)物理框架,然后可以對(duì)這個(gè)框架進(jìn)行相應(yīng)的修飾完善,最終達(dá)到可以完成分析的目標(biāo)。本部分內(nèi)容就是以胸腰椎標(biāo)本為例來(lái)說(shuō)明相應(yīng)骨骼有限元模型建立的一般流程技術(shù)方法及注意事項(xiàng)。重點(diǎn)闡述了對(duì)三維重建中構(gòu)造幾何模型的過(guò)程,通過(guò)相應(yīng)的Remesh操作提高有限元網(wǎng)格劃分成功率及質(zhì)量的方法,以及使用geomagic軟件處理相應(yīng)三維模型得到理想有限元模型的方法。 自動(dòng)分配方法中材料屬性分配梯度對(duì)椎骨有限元模型力學(xué)性能的影響 [目的] 研究以灰度值為基礎(chǔ)的不同材料屬性分配梯度對(duì)椎骨有限元模型力學(xué)性能的影響。 [方法] 對(duì)一位健康成人脊柱(T12~L5節(jié)段)進(jìn)行快速CT薄層掃描,在MIMICS中對(duì)每節(jié)椎骨進(jìn)行三維重建,通過(guò)Geomagic軟件處理后,導(dǎo)入ANSYS中進(jìn)行網(wǎng)格劃分,再返回到MIMICS中按2,4,8,10,50,100,200,400份等8種梯度對(duì)材料屬性進(jìn)行分配,最后重新導(dǎo)入ANSYS軟件按照同一載荷條件進(jìn)行有限元分析。 [結(jié)果] 2、4、400這三個(gè)分配梯度與其它分配梯度相比,應(yīng)力情況存在顯著性差異(P0.05),而8、10、50、100、200梯度之間計(jì)算結(jié)果偏差不大。 [結(jié)論] 有限元模型材料屬性劃分不宜過(guò)多或過(guò)少,10份左右的劃分梯度既可保證運(yùn)算結(jié)果的精確性,也相對(duì)可以提高運(yùn)算速度,尤其適用于臨床個(gè)性化快速有限元建模。 材料屬性手動(dòng)分配法與自動(dòng)分配法對(duì)椎骨有限元模型力學(xué)性能的影響 [目的] 研究自動(dòng)分配方法與手動(dòng)賦值法對(duì)椎骨有限元模型力學(xué)性能的影響。 [方法] 對(duì)一位健康成人脊柱(T12-L5)進(jìn)行快速CT薄層掃描,在MIMICS中對(duì)每節(jié)椎骨進(jìn)行三維重建,通過(guò)Geomagic軟件處理后導(dǎo)回MIMICS中進(jìn)行Remesh處理,然后導(dǎo)入ANSYS中進(jìn)行網(wǎng)格劃分。材料屬性按兩種方法劃分:一、手動(dòng)賦值法,直接在A(yíng)NSYS中選取外圍單元賦予皮質(zhì)骨屬性,其它單元賦予松質(zhì)骨屬性;二、CT灰度值賦值法(自動(dòng)分配法),模型導(dǎo)回到MIMICS中按照10份得分配梯度進(jìn)行材料屬性的賦值。最后在A(yíng)NSYS中進(jìn)行有限元分析。 [結(jié)果] 手動(dòng)賦值法中椎體的最大位移為28.0583mm,最大應(yīng)力為149.167N;CT灰度10分法椎體的最大位移處位移為24.3517mmm,最大應(yīng)力為148.986N。節(jié)點(diǎn)的位移分布情況,手動(dòng)賦值法中位移活動(dòng)范圍等值線(xiàn)較少;CT灰度10分法呈多處等值線(xiàn)。根據(jù)路徑圖可以看出.兩種方法運(yùn)算結(jié)果存在顯著性差異。直接賦值法較灰度賦值法應(yīng)力情況總體偏低,其中皮質(zhì)骨部分應(yīng)力顯著偏大,松質(zhì)骨部分應(yīng)力明顯偏小。 [結(jié)論] 手動(dòng)賦值法的應(yīng)力分布數(shù)據(jù)在皮質(zhì)骨和松質(zhì)骨之間分布相對(duì)離散,CT灰度值賦值法的應(yīng)力分布數(shù)據(jù)分布相對(duì)集中。相比較而言灰度賦值法10分法其分法更貼近于人骨復(fù)雜材料屬性的狀況,尤其適用于臨床個(gè)性化快速有限元建模。
[Abstract]:Background:
The concept of digital medicine has promoted the combination of finite element technology and medicine. The extensive application of CT data set in 3D reconstruction has accelerated the development of this process, especially in the construction of bone model. The three-dimensional finite element model can be used to analyze the stress and strain of normal bone, and can also be used to analyze it. The risk factor of fracture or the micromovement of internal fixation. In foreign countries, O'Reilly and Whyn, Little et al, Schileo et al, Yosibash and other parts of the spine and femur have been studied. The research on the finite element in China is gradually deepened, especially the concept of digital medicine is put forward by the finite element technology and the medical prescription. Many scholars have made corresponding research in the field of finite element simulation.
Finite element modeling refers to the establishment of a digital model that can be successfully calculated by a computer. The model is consistent with the mechanical properties of the physical model in reality. The essence of this model is to establish a digital model in the virtual environment of the computer by the finite element method. The model has the following requirements: first, to ensure the integrity of the mechanics; two: to The validity of the calculation is guaranteed. That is, the established finite element model has two missions to carry the complete mechanical information to ensure that the computer can calculate quickly and accurately. In the process of establishing the finite element model, we should not only ensure that the shape of the model is similar to the reality, but also the performance of some mechanical materials and the real situation of the model. The high characteristic.CT scanning that CT scan can reflect the bone model can be used as a non invasive diagnostic method of clinical routine in vitro. It can not only provide accurate geometry information of bone, but also provide bone related mechanical properties. At this stage, the most important use of CT data in the finite element field is at the present stage. The construction of three-dimensional model of bone, and another important part of the construction of finite element model: material attribute assignment, but little involved. Bone is one of the main objects of medical finite element analysis, the material properties of human bone are more complex, individual differences are obvious, there are differences between different people or different parts of the same human body. The traditional method of dividing the properties of bone materials is to assign the bone to two parts of the cortical bone and the cancellous bone, which is incompatible with the complexity of the human bone material property, and there will be great errors in the calculation. With the deepening of the understanding of the CT data and the development and application of the corresponding software, a class of software developed gradually. Such as MIMICS, BONEMAT, AMAB and so on, these software can combine the CT data as an internal data code and the finite element simulation model. The allocation scheme is based on the gray value of the CT data to determine the material properties of the finite element model. The specific method is to extract the pixel values of all the CT images in the single volume and calculate it. The average value is assigned to the cell. This method can finally achieve the purpose of determining the elastic modulus of each element in the finite element model through the CT gray value.
3D reconstruction and visualization of medical images is a theory that uses computer graphics, image processing, computer vision and human-computer interaction technology to convert medical image data into graphics or images on screen and interact with each other. Method and technology.MIMICS is an interactive medicine developed by Materialise company. The Materialise's interactive medical image control system is a highly integrated and easy to use 3D image generation and editing processing software. It can input various medical images (CT, MRI) data, establish 3D model for editing, and transform the large-scale data into the PC machine. This software can be used in addition to the application of the software. In building the 3D model, we can connect the CT gray value with the material properties of the model, and assign the material properties of the model according to a certain partition gradient. A better assignment method and a better allocation scheme can improve the error caused by individual difference in the calculation. This experiment is based on the MIMICS software. On the premise of better geometric reconstruction, the modulus of elasticity of the model is assigned by its material attribute allocation module, and the results of the finite element analysis of these models are compared, and a better assignment method is obtained by comparing it with the finite element method of the manual assignment method. Two kinds of assignment methods (CT gray value assignment method, manual assignment method) and the influence of different gradient changes on the finite element analysis results in the CT gray value assignment method, a relative economic and accurate division gradient is obtained, which provides the relevant theoretical basis for the application of the method in the finite element study, especially in the rapid modeling and analysis of clinical phase.
Finite element modeling of vertebrae
This part mainly summarizes the early modeling work of the implementation of the subject, expounds the related methods and techniques, and illustrates the whole process of effective modeling in this experiment. Finite element analysis is an important experimental means to simulate the function of human structure and mechanics in the field of biomechanics in recent years. The finite element model is the basis of the finite element simulation analysis. The aim of this model is to provide a physical framework for further finite element analysis, and then the frame can be applied to this frame. In this part, the general flow technique method and attention for the establishment of the corresponding skeleton finite element model are illustrated by the example of the thoracic and lumbar specimens. The process of constructing the geometric model in the three-dimensional reconstruction is emphasized, and the corresponding Remesh operation is used to improve the process. The method of limiting the success rate and quality of mesh generation and the method of obtaining the ideal finite element model by using Geomagic software to process the corresponding three-dimensional model.
Effect of gradient of material property distribution on mechanical properties of finite element model of vertebrae in automatic allocation method
[Objective]
The effects of different material property distribution gradients based on gray value on mechanical properties of vertebral finite element models were studied.
[method]
A healthy adult spinal column (T12 ~ L5 segment) was scanned by fast CT thin layer, and each vertebra was reconstructed in MIMICS. After Geomagic software, the mesh was introduced into ANSYS and then returned to MIMICS to distribute the material properties according to the 8 gradients such as 2,4,8,10,50100200400, and finally reimported the ANSYS software. The finite element analysis is carried out according to the same load condition.
[results]
Compared with other distribution gradients, there is a significant difference in stress between the three distribution gradients of 2,4400 (P0.05), but the results of the 8,10,50100200 gradient have little deviation.
[Conclusion]
The material attributes of the finite element model should not be too much or too little. The 10 partition gradient can not only ensure the accuracy of the calculation results, but also improve the computing speed. It is especially suitable for the personalized rapid finite element modeling of clinical personalization.
Effects of manual distribution and automatic allocation of material properties on mechanical properties of finite element models of vertebrae
[Objective]
The influence of automatic allocation method and manual assignment method on the mechanical properties of the finite element model of vertebrae is studied.
[method]
A healthy adult spinal column (T12-L5) was scanned by fast CT thin layer, and each vertebra was reconstructed in MIMICS. Remesh treatment was carried out in MIMICS through Geomagic software, and then transferred into ANSYS to mesh. The material attributes were divided according to two methods: first, manual assignment method, directly selecting peripheral single in ANSYS. The element gives the cortical bone attribute, the other units give the cancellous bone property; two, the CT gray value assignment method (automatic distribution method), the model is guided back to the MIMICS to assign the material attribute according to the distribution gradient of 10 parts. Finally, the finite element analysis is carried out in the ANSYS.
[results]
The maximum displacement of the vertebral body in the manual assignment method is 28.0583mm, the maximum stress is 149.167N, the maximum displacement of the CT gray 10 point method is 24.3517mmm, the maximum stress is the displacement distribution of the 148.986N. node, the displacement range contour line is less in the manual assignment method, and the CT grey degree method has multiple contour lines. We can see that there are significant differences in the results of the two methods. The stress in the direct assignment method is generally lower than that of the gray value method. The partial stress of the cortical bone is significantly larger and the partial stress of the cancellous bone is obviously smaller.
[Conclusion]
The distribution of stress distribution in the manual assignment method is relatively discrete between the cortical bone and the cancellous bone, and the distribution of the stress distribution data of the CT gray value assignment method is relatively concentrated. In comparison with the gray value method, the 10 division method is more close to the state of the human bone complex material properties, especially for the personalized rapid finite element modeling of clinical individualization.
【學(xué)位授予單位】:南方醫(yī)科大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:R318.08
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙文志;李斌;陳秉智;蘇晉;何盛為;張路;;頸椎三維有限元模型的建立方法與評(píng)價(jià)[J];大連醫(yī)科大學(xué)學(xué)報(bào);2009年05期
2 李生;劉迎曦;孫秀珍;;人耳鼓膜置管數(shù)值分析[J];力學(xué)與實(shí)踐;2009年02期
3 張_";張清功;馬信龍;田心;王志鋼;馬劍雄;;應(yīng)用CT斷層圖像重建股骨有限元模型[J];生物醫(yī)學(xué)工程與臨床;2008年06期
4 鐘硯琳;王海鵬;容可;王友;謝叻;;不同屈曲角度下膝關(guān)節(jié)主要韌帶有限元模型的建立和驗(yàn)證[J];中國(guó)組織工程研究與臨床康復(fù);2010年30期
5 陳浩;于曉華;華國(guó)軍;胡一平;樊嶸;;腰椎運(yùn)動(dòng)節(jié)段流固耦合有限元模型的建立與驗(yàn)證[J];中國(guó)組織工程研究與臨床康復(fù);2010年52期
6 劉兵;謝杰鎮(zhèn);王博亮;鞠穎;;基于有限元的角膜建模及RK手術(shù)分析[J];中國(guó)數(shù)字醫(yī)學(xué);2008年12期
7 楊濟(jì)匡;彭勇;許偉;聶進(jìn);;顱腦創(chuàng)傷有限元模型的建立及驗(yàn)證(英文)[J];中國(guó)組織工程研究與臨床康復(fù);2009年52期
8 孫艷霞,鮑旭東,蔣春濤;軟組織建模中的有限元模型[J];生物醫(yī)學(xué)工程研究;2004年03期
9 陳灼彬;萬(wàn)磊;;醫(yī)學(xué)有限元的建模方法[J];中國(guó)組織工程研究與臨床康復(fù);2007年31期
10 王國(guó)林;張美超;李義凱;徐海濤;邱桂春;;三種腰椎前屈狀態(tài)下坐位腰椎旋轉(zhuǎn)手法比較研究[J];頸腰痛雜志;2008年01期
相關(guān)會(huì)議論文 前10條
1 顧蘇熙;李明;朱曉東;賀石生;吳大江;王傳鋒;陳自強(qiáng);;脊柱側(cè)凸有限元模型的個(gè)體化生物力學(xué)賦值[A];第三屆中西醫(yī)結(jié)合脊柱及相關(guān)疾病學(xué)術(shù)年會(huì)論文集[C];2009年
2 孫秀珍;李生;劉迎曦;;錘骨固定對(duì)人耳傳聲影響的數(shù)值模型[A];慶祝中國(guó)力學(xué)學(xué)會(huì)成立50周年暨中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)’2007論文摘要集(上)[C];2007年
3 張濤;岑松;;基于Hamilton變分原理的四邊形4結(jié)點(diǎn)雜交元[A];第18屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集第Ⅰ冊(cè)[C];2009年
4 劉振國(guó);張海國(guó);盧子興;李典森;;三維四向編織復(fù)合材料導(dǎo)熱性能的研究[A];北京力學(xué)會(huì)第13屆學(xué)術(shù)年會(huì)論文集[C];2007年
5 高軒能;月明;鄒銀生;周緒紅;江建;;結(jié)構(gòu)穩(wěn)定分析的泡函數(shù)有限元法[A];第七屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅰ卷)[C];1998年
6 金建新;王肇民;;節(jié)點(diǎn)板上升式連接件的有限元分析[A];第七屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第Ⅰ卷)[C];1998年
7 魏海;沈振中;江沆;聶琴;;基于隨機(jī)理論的滲透參數(shù)反演分析方法及應(yīng)用[A];水工滲流研究與應(yīng)用進(jìn)展——第五屆全國(guó)水利工程滲流學(xué)術(shù)研討會(huì)論文集[C];2006年
8 陳廷國(guó);任慶新;劉艷華;閆磊;張寧;;鋼管混凝土拱橋的溫度特性分析[A];中國(guó)鋼結(jié)構(gòu)協(xié)會(huì)鋼-混凝土組合結(jié)構(gòu)分會(huì)第十次年會(huì)論文集[C];2005年
9 姜忻良;譚丁;;交叉隧道地震反應(yīng)三維有限元和無(wú)限元分析[A];第三屆全國(guó)現(xiàn)代結(jié)構(gòu)工程學(xué)術(shù)研討會(huì)論文集[C];2003年
10 鮑海利;曹宗杰;黃秋水;;某大型飛機(jī)機(jī)身建模與特性的研究[A];科技創(chuàng)新與節(jié)能減排——吉林省第五屆科學(xué)技術(shù)學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2008年
相關(guān)重要報(bào)紙文章 前10條
1 劉軍;滄州大化 迎來(lái)發(fā)展黃金時(shí)段[N];中國(guó)證券報(bào);2007年
2 本報(bào)記者 張亮;深入納米尺度研究爆炸物[N];科技日?qǐng)?bào);2006年
3 任效良;科大科研成果填補(bǔ)國(guó)際空白[N];北方經(jīng)濟(jì)時(shí)報(bào);2007年
4 張?jiān)史?彭國(guó)勛;CAE技術(shù)在空調(diào)器木包裝箱優(yōu)化設(shè)計(jì)中的應(yīng)用[N];中國(guó)包裝報(bào);2008年
5 ;品牌建設(shè):做大珠寶飾品市場(chǎng)的關(guān)鍵[N];經(jīng)濟(jì)日?qǐng)?bào);2007年
6 王麗華;新坐具亮相北京[N];中華建筑報(bào);2005年
7 南京 東南大學(xué)生物醫(yī)學(xué)工程系影像科學(xué)與技術(shù)實(shí)驗(yàn)室(210096)郭圣文;圖像灰度的處理方法[N];計(jì)算機(jī)世界;2001年
8 孟晶;CAD/CAE技術(shù)亟須走出象牙塔[N];中國(guó)化工報(bào);2006年
9 張寶權(quán) 張勃;大連船務(wù)創(chuàng)新工藝促修船[N];中國(guó)船舶報(bào);2008年
10 毛新華 袁理 記者 林木;獲獎(jiǎng)無(wú)數(shù)的六級(jí)士官[N];中國(guó)婦女報(bào);2006年
相關(guān)博士學(xué)位論文 前10條
1 段光明;先天性寰樞椎脫位發(fā)生機(jī)制的三維非線(xiàn)性有限元研究[D];中國(guó)人民解放軍軍醫(yī)進(jìn)修學(xué)院;2008年
2 李孝林;胸腰椎壓縮性骨折有限元模型的建立及過(guò)伸復(fù)位治療的生物力學(xué)分析[D];湖北中醫(yī)學(xué)院;2009年
3 劉耀升;下腰椎退變多因素有限元分析[D];浙江大學(xué);2007年
4 胡吉永;基于觸覺(jué)認(rèn)知的織物質(zhì)感的形成機(jī)理研究[D];東華大學(xué);2008年
5 王鵬;枕寰樞復(fù)合體有限元分析[D];中國(guó)人民解放軍軍醫(yī)進(jìn)修學(xué)院;2008年
6 唐明星;Lenke1A-型青少年特發(fā)性脊柱側(cè)凸有限元模型建立及其生物力學(xué)研究[D];中南大學(xué);2009年
7 鮑安紅;粘貼加固混凝土梁的剝離研究[D];重慶大學(xué);2005年
8 左治江;環(huán)件冷輾擴(kuò)變形規(guī)律和工藝模擬研究[D];武漢理工大學(xué);2006年
9 范志會(huì);基于彈性大變形余能原理的有限元法研究[D];北京交通大學(xué);2007年
10 宮毅;血流動(dòng)力學(xué)在兔腹主動(dòng)脈瘤形成過(guò)程中的作用[D];中南大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 荀福興;不同材料屬性分配方法對(duì)椎體有限元模型力學(xué)性能的影響[D];南方醫(yī)科大學(xué);2013年
2 楊曉文;滾筒式洗衣機(jī)的振動(dòng)模態(tài)分析[D];上海交通大學(xué);2006年
3 趙雅麗;大跨度鋼管混凝土拱橋的地震響應(yīng)分析[D];浙江大學(xué);2005年
4 王文志;專(zhuān)用有限元分析軟件的開(kāi)發(fā)與應(yīng)用[D];北方工業(yè)大學(xué);2005年
5 王彥超;大跨預(yù)應(yīng)力混凝土樓蓋結(jié)構(gòu)性能研究[D];鄭州大學(xué);2005年
6 劉強(qiáng);一種新型結(jié)構(gòu)開(kāi)關(guān)磁阻電機(jī)電磁場(chǎng)的有限元分析及起動(dòng)性能研究[D];江蘇大學(xué);2005年
7 張?zhí)彝?板料拉深過(guò)程中的摩擦模型及其有限元模擬研究[D];南昌大學(xué);2005年
8 張海龍;鋼筋混凝土結(jié)構(gòu)極限承載力分析的非線(xiàn)性有限元法[D];長(zhǎng)安大學(xué);2005年
9 彭惠芬;潛油電泵軸的可靠性分析與設(shè)計(jì)[D];大慶石油學(xué)院;2006年
10 李慶齡;5-UPS/PRPU并聯(lián)機(jī)床的動(dòng)態(tài)特性分析[D];燕山大學(xué);2006年
,本文編號(hào):2064542
本文鏈接:http://www.sikaile.net/yixuelunwen/swyx/2064542.html