化學處理對蠶絲降解性質及生物相容性的影響
本文選題:蠶絲 + 降解。 參考:《西南大學》2017年碩士論文
【摘要】:蠶絲是由桑蠶(俗稱家蠶)或柞蠶幼蟲分泌產生的天然絲纖維,分別稱為桑蠶絲和柞蠶絲,本文中的蠶絲是指家蠶絲。在蠶絲的形成過程中,家蠶幼蟲的后部絲腺分泌產生絲素蛋白(簡稱絲素),中部絲腺分泌產生絲膠蛋白(簡稱絲膠),絲素由經中部絲腺時與絲膠混合,排出體外形成繭絲。未經脫絲膠處理的蠶絲稱為生絲,經脫絲膠處理的蠶絲稱為熟絲。蠶絲是一種具有良好生物相容性的天然材料,已經被廣泛應用于生物醫(yī)藥領域研究和實踐中。手術縫合線(絲線)是蠶絲在生物醫(yī)藥領域應用的典型例子。根據(jù)降解性質的不同,可以將生物組織工程材料分為兩類,其一是要求在動物體內不發(fā)生降解作用的材料,如聚四氟乙烯制備的人工血管、骨科固定用途的金屬材料和牙科用途的一些材料等。另一類是希望在動物體內發(fā)生完全降解作用的材料,在使用這類材料的過程中,人們希望隨著組織的再生,這些材料逐步降解,最終完全代謝,這就要求這類材料的降解速率要和組織再生的速率匹配,F(xiàn)有研究表明,蠶絲在體內的降解速率極為緩慢,這就限制了蠶絲在組織工程中的應用,為此,本研究試圖探討在體外對蠶絲化學處理能否促進其在體內的降解。組織工程材料需要一定的力學性能,用途不同,對力學性能的要求就不同。人工血管需要較好的韌性和彈性,骨科固定材料需要較好的硬度,人工神經對力學性能的要求較低,能夠耐受神經移植手術操作即可。本研究希望在體外化學處理過程中,蠶絲部分降解的同時,能保持其纖維狀態(tài)和一定的力學性能。有研究表明,蠶絲纖維在體內的降解是隨機的,當蠶絲移植到動物體內后,蠶絲纖維的數(shù)量會減少,但是有些蠶絲纖維的形態(tài)和直徑無顯著變化,我們猜想這是由于炎癥反應介導的細胞吞噬作用在起作用,在細胞吞噬作用進行的同時,一般都伴隨組織纖維化,因此本研究擬考察蠶絲在大鼠皮下埋植過程中炎癥因子和膠原的表達的情況。本文以家蠶絲為主要材料,在1%的碳酸鈉溶液中煮沸30 min脫絲膠獲得熟絲,然后分別用0.05 moL/L、0.1 moL/L、0.5 moL/L的NaOH、NaHCO3、HCl、H3PO4、CH3COOH、CaCl2溶液和飽和石灰水處理熟絲,分別在第1、2、3和4周取材,檢測力學性質,稱重計算失重率,檢測上述溶液中粗蛋白含量和pH值;掃描電鏡觀察其表面形貌;在大鼠皮下埋植,取材進行石蠟切片,H.E染色觀察,冰凍切片免疫熒光染色觀察;RT-PCR檢測炎癥和膠原相關基因的表達情況。7種化學物質對蠶絲進行體外降解的過程,體現(xiàn)出了濃度效應。化學物質對蠶絲的體外降解作用由強到弱的順序依次為氫氧化鈉飽和石灰水鹽酸醋酸碳酸氫鈉磷酸溶液氯化鈣。掃描電鏡結果顯示,與處理前單絲直徑相比,各實驗組單絲直徑都有所減小,但減小程度不同,纖維直徑縮小的程度由大到小的順序依次為飽和石灰水氫氧化鈉醋酸鹽酸碳酸氫鈉和氯化鈣。力學測試結果表明隨著化學處理濃度的增大,時間的延長,蠶絲纖維的機械強度會顯著降低。降低程度由大到小依次為醋酸碳酸氫鈉氯化鈣氫氧化鈉鹽酸磷酸飽和石灰水。隨化學處理時間的延長,蠶絲纖維的硬度增大,由大到小的順序為氯化鈣醋酸碳酸氫鈉鹽酸磷酸飽和石灰水氫氧化鈉。蠶絲彈性隨處理時間的變化幅度不大,蠶絲彈性由大到小的順序為醋酸碳酸氫鈉氯化鈣鹽酸磷酸飽和石灰水氫氧化鈉。皮下埋植化學處理后的蠶絲,取出包塊進行組織切片H.E染色,結果顯示,各組中蠶絲均有程度不同的降解。根據(jù)單位面積中殘留的蠶絲數(shù)量,可知細胞對蠶絲的吞噬作用由弱至強依次為對照組、磷酸處理組、鹽酸處理組、醋酸處理組、石灰水處理組、氫氧化鈉處理組、氯化鈣處理組、碳酸氫鈉處理組。根據(jù)殘留蠶絲橫截面平均面積,可知組織液對蠶絲降解程度由強至弱依次為鹽酸處理組、磷酸處理組、醋酸處理組、碳酸氫鈉處理組、氯化鈣處理組、氫氧化鈉處理組、石灰水處理組、對照組。RT-PCR檢測顯示,不同的化學處理對蠶絲材料的生物相容性的影響有差異。蠶絲生物相容性由強到弱依次為,磷酸處理組、鹽酸處理組、醋酸處理組、石灰水處理組、氫氧化鈉處理組、氯化鈣處理組、碳酸氫鈉處理組。因此,7種化學物質對蠶絲的形態(tài)結構、力學性質、在體內的降解性質及生物相容性的影響均有差異,都加快了蠶絲在體內的降解速率,并且維持了蠶絲的纖維狀形態(tài)和一定的力學性能。效果由優(yōu)至劣的順序為:氫氧化鈉、鹽酸、碳酸氫鈉、飽和石灰水、醋酸、氯化鈣、磷酸。
[Abstract]:Silk is a natural silk fiber produced by silkworm (commonly known as silkworm) or tussah larvae. It is called mulberry silk and tussah silk. The silk in this article refers to the silk. In the formation of silk, the silk gland of the silkworm larvae is secreted to produce silk fibroin (silk fibroin), and sericin (sericin) and silk fibroin is produced in the middle silk gland. Silk is mixed with sericin when it is mixed with Sericin to form cocoon silk in vitro. Silk without sericin treated silk is called raw silk, and silk treated by degel is called cooked silk. Silk is a natural material with good biocompatibility. It has been widely used in research and practice in the field of biological medicine. The surgical suture line (silk thread) is silkworm silk. A typical example of application in the field of bio medicine. According to the different degradation properties, biotissue engineering materials can be divided into two types, one is the material that requires no degradation in the animal body, such as artificial blood vessels made of polytetrafluoroethylene, metal materials for Department of orthopedics fixed use and some materials for dental use. In the process of using this kind of material, people hope that with the regeneration of this kind of material, it is hoped that these materials will be degraded gradually and eventually completely metabolized with the regeneration of the tissue. This requires that the degradation rate of this kind of material match the rate of tissue regeneration. This restricts the application of silk in tissue engineering. To this end, this study attempts to explore whether the chemical treatment of silk in vitro can promote its degradation in the body. Tissue engineering materials require certain mechanical properties, different uses, and different requirements for mechanical properties. Artificial blood vessels need better toughness and elasticity, and department of orthopedics fixed materials need to be used. For better hardness, the mechanical properties of the artificial nerve are lower and the nerve graft operation can be tolerated. This study hopes to maintain the fiber status and certain mechanical properties while the silk part is degraded during the process of chemical treatment in vitro. The number of silk fibers will decrease, but there is no significant change in the shape and diameter of some silk fibers. We suspect that this is due to the inflammatory reaction mediated cell phagocytosis, while the phagocytosis of the cells is usually accompanied by tissue fibrosis. Therefore, this study is to investigate the silk in rat skin. The expression of inflammatory factors and collagen during the process of implantation. In this paper, the silk was used as the main material, and cooked by boiling 30 min sericin in 1% sodium carbonate solution, and then using 0.05 moL/L, 0.1 moL/L, 0.5 moL/L NaOH, NaHCO3, HCl, H3PO4, CH3COOH, CaCl2 solution and saturated lime water treatment, respectively, at the 1,2,3 and 4 weeks, respectively. Material, testing the mechanical properties, weighing the weight loss rate, detecting the content of crude protein and pH in the above solution; scanning electron microscope to observe its surface morphology; subcutaneous implantation in rats, paraffin section, H.E staining observation, frozen section immunofluorescence staining, and RT-PCR detection of the expression of inflammation and collagen related genes in.7 chemical substances The degradation of silk in vitro shows the concentration effect. The degradation of silk in vitro by chemical substances from strong to weak is in order of sodium hydroxide saturated lime water hydrochloric acid sodium bicarbonate phosphate solution in order of calcium chloride. The results of scanning electron microscope show that the diameter of monofilament in each experiment group decreases compared with the direct diameter of the monofilament before treatment. But the degree of reduction is different, the degree of shrinkage of fiber diameter from large to small is saturated lime water sodium hydroxide acetate sodium bicarbonate and calcium chloride in turn. The mechanical test results show that with the increase of chemical treatment concentration, the time prolongs, the mechanical strength of silk fiber will decrease significantly. The reduction degree from large to small is the vinegar. Sodium bicarbonate sodium hydroxide hydrochloric acid saturated lime water. With the prolongation of the chemical treatment time, the hardness of silk fiber increases, from large to small, the order of sodium bicarbonate hydrochloric acid phosphate saturated lime water sodium hydroxide in the order of large to small. The change of silk elasticity with the treatment time is little, the order of silk elasticity from large to small is the order of Sodium bicarbonate calcium chloride hydrochloric acid saturated lime water sodium hydroxide. The silkworm silk treated by subcutaneously implanted chemical treated silkworm was stained with H.E. The results showed that the silkworm silk in each group had different degrees of degradation. According to the number of silkworm residues in the unit area, the phagocytosis of the silkworm silk was determined from weak to strong order. For the control group, the phosphoric acid treatment group, the hydrochloric acid treatment group, the acetic acid treatment group, the lime water treatment group, the sodium hydroxide treatment group, the calcium chloride treatment group and the sodium bicarbonate treatment group. According to the average cross-sectional area of the silkworm silk, we can see that the degradation degree of the silkworm silk is from strong to weak to the hydrochloric acid treatment group, the phosphoric acid treatment group, the acetic acid treatment group and the hydrogen carbonate. Sodium chloride treatment group, calcium chloride treatment group, sodium hydroxide treatment group, lime water treatment group and control group.RT-PCR test showed that different chemical treatments had different effects on the biocompatibility of silk material. The biocompatibility of silkworm silk was in turn from strong to weak, phosphoric acid treatment group, hydrochloric acid treatment group, acetic acid treatment group, lime water treatment group, sodium hydroxide. Treatment group, calcium chloride treatment group, sodium bicarbonate treatment group. Therefore, the 7 chemical substances have different effects on the morphological structure, mechanical properties, degradation properties and biocompatibility of silk, which have accelerated the degradation rate of silk in the body, and maintain the fibrous form and certain mechanical properties of silkworm silk. The order of deterioration is sodium hydroxide, hydrochloric acid, sodium bicarbonate, saturated lime water, acetic acid, calcium chloride, and phosphoric acid.
【學位授予單位】:西南大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R318.08
【參考文獻】
相關期刊論文 前10條
1 王瀝浩;王文慧;郭詠昕;楊晶;;膠原蛋白功能概述[J];黑龍江農業(yè)科學;2014年03期
2 賀金梅;葉真銘;程瑋璐;黃玉東;付波;;膠原蛋白的功能化改性研究進展[J];現(xiàn)代化工;2013年06期
3 徐淑萍;宗亞寧;;酸堿處理對天蠶絲結構與性能的影響[J];中原工學院學報;2012年04期
4 劉九羊;黃少萌;高安秀;;生物醫(yī)學材料概論[J];科技風;2012年05期
5 李瑞;王青山;;生物材料生物相容性的評價方法和發(fā)展趨勢[J];中國組織工程研究與臨床康復;2011年29期
6 侯春春;張胡靜;李圣春;成國濤;徐水;;蠶絲蛋白生物醫(yī)學材料的研究現(xiàn)狀[J];絲綢;2010年07期
7 陳寶愛;羅七一;;可降解支架材料熱學、機械性能及與受體的生物相容性[J];中國組織工程研究與臨床康復;2010年29期
8 張聚華;傅吉全;李秀艷;;柞蠶絲織物酸堿條件下水解老化過程的結構分析[J];北京服裝學院學報(自然科學版);2010年02期
9 李樹根;王文兒;劉云;閻大益;;天蠶絲醫(yī)用縫線在動物模型中生物相容性的實驗研究[J];湖南師范大學學報(醫(yī)學版);2009年03期
10 石云峰;吳本權;;炎性細胞因子在細菌感染中的作用[J];國際內科學雜志;2009年02期
相關會議論文 前1條
1 張力;王偉;崔福齋;;新型組織工程化骨修復骨缺損的實驗研究[A];第七屆全國康復醫(yī)學工程與康復工程學術研討會論文集[C];2010年
相關博士學位論文 前1條
1 付誠杰;柞蠶絲結構和力學性能的深入研究[D];復旦大學;2010年
相關碩士學位論文 前2條
1 游華建;蠶絲微通道人工神經修復大鼠坐骨神經缺損[D];西南大學;2016年
2 趙國巍;生物醫(yī)用高分子材料的表面改性及其抗凝血性能的研究[D];陜西師范大學;2006年
,本文編號:1919921
本文鏈接:http://www.sikaile.net/yixuelunwen/swyx/1919921.html