生物用擠壓態(tài)Mg-Zn-Y-Nd-xCu合金組織及性能的研究
本文關(guān)鍵詞: Mg-Zn-Y-Nd-xCu 合金 熱 擠壓 力學(xué) 性能 降解性能 抗菌性能 出處:《鄭州大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:生物鎂合金具有良好的生物相容性、可降解性能及與人體密質(zhì)骨相近的彈性模量,能夠有效避免“應(yīng)力遮擋效應(yīng)”,具有非常廣闊的應(yīng)用前景。然而鎂及其合金的力學(xué)性能和耐蝕性能比較差,不能滿足醫(yī)用金屬材料的要求,且不具備抗菌作用,容易引發(fā)術(shù)后感染。本文在Mg-Zn-Y-Nd合金中添加具有抗菌作用的Cu元素,使合金具備抗菌性能,然后通過(guò)擠壓加工處理,細(xì)化晶粒、改善合金的組織,從而提高合金的力學(xué)性能和耐蝕性能。采用OM、SEMEDS、XRD來(lái)分析合金的顯微組織和物相組成;通過(guò)顯微硬度、室溫拉伸實(shí)驗(yàn)測(cè)試合金的力學(xué)性能;通過(guò)電化學(xué)實(shí)驗(yàn)、失重分析、析氫分析來(lái)測(cè)試腐蝕性能;最后通過(guò)體外抗菌實(shí)驗(yàn)分析合金的抗菌性能。鑄態(tài)Mg-Zn-Y-Nd-xCu合金的晶粒粗大,組織不均勻,存在一定程度的枝晶偏析。隨著Cu含量的增加,合金中第二相數(shù)量逐漸增多,并逐漸相互連接成網(wǎng)狀結(jié)構(gòu)。經(jīng)過(guò)擠壓加工后,合金的晶粒得到明顯細(xì)化,組織變?yōu)榈容S晶,第二相顆粒大部分固溶進(jìn)基體,剩余部分彌散分布在晶粒內(nèi)部。隨著Cu含量的增加,擠壓態(tài)Mg-Zn-Y-Nd-xCu合金的晶粒逐漸變小,晶粒尺寸由0.1wt.%Cu時(shí)的18μm減小到0.5wt.%Cu時(shí)的3μm。Cu加入以后合金中形成了CuMg2相,鑄態(tài)Mg-Zn-Y-Nd-xCu合金的顯微組織由鎂基體和第二相(MgZn,CuMg2,Mg12YZn,Mg41Nd5)組成。經(jīng)過(guò)擠壓加工以后,只在擠壓態(tài)Mg-Zn-Y-Nd-0.5Cu合金中檢測(cè)到CuMg2二元相的存在,主要是因?yàn)楹?.1wt.%Cu和0.3wt.%Cu的合金在熱擠壓過(guò)程中,Cu元素全部或者大部分固溶進(jìn)入基體,導(dǎo)致含Cu第二相的體積分?jǐn)?shù)大大減少,因此,沒(méi)有檢測(cè)出CuMg2相的存在。鑄態(tài)Mg-Zn-Y-Nd-xCu合金中CuMg2相的存在降低了鎂合金的力學(xué)性能。經(jīng)過(guò)擠壓加工,合金的抗拉強(qiáng)度和伸長(zhǎng)率都得到明顯的提高,其中擠壓態(tài)Mg-Zn-Y-Nd-0.1Cu合金的抗拉強(qiáng)度能夠達(dá)到325MPa。隨著Cu含量的增加,擠壓態(tài)合金的力學(xué)性能逐漸降低。由于Cu的加入,合金中形成了CuMg2相,在腐蝕過(guò)程中該相和鎂基體形成原電池,增加了鎂合金基體的電偶腐蝕,降低了鎂合金的耐蝕性能。經(jīng)過(guò)擠壓加工以后,合金的晶粒得到明顯細(xì)化,組織比較均勻,并且第二相顆粒大部分固溶進(jìn)入基體中,擠壓態(tài)合金的耐蝕性能優(yōu)于鑄態(tài)合金。隨著Cu含量的增加,擠壓態(tài)合金的耐蝕性能逐漸降低。通過(guò)抗菌實(shí)驗(yàn)可知,擠壓態(tài)Mg-Zn-Y-Nd合金本身則不具有抗菌作用,擠壓態(tài)Mg-Zn-Y-Nd-xCu合金對(duì)大腸桿菌和金黃色葡萄球菌的抗菌率均在99%以上,符合Ⅰ級(jí)抗菌材料的要求,具有強(qiáng)烈的抗菌作用。隨著Cu含量的增加,擠壓態(tài)合金的抗菌性能逐漸增加。通過(guò)對(duì)Mg-Zn-Y-Nd-xCu合金進(jìn)行擠壓加工,以期獲得合金在有限的服役期內(nèi),能夠保持機(jī)械性能的穩(wěn)定性,同時(shí)在降解過(guò)程中釋放的Cu離子又具有很好的抗菌效果,為鎂合金作為醫(yī)用材料的臨床應(yīng)用提供理論依據(jù)。
[Abstract]:Magnesium alloys have good biocompatibility, biodegradability and elastic modulus similar to those of human dense bone. It can effectively avoid the "stress shielding effect", and has a very broad application prospect. However, the mechanical properties and corrosion resistance of magnesium and its alloys are relatively poor, which can not meet the requirements of medical metal materials, and have no antimicrobial effect. It is easy to cause postoperative infection. In this paper, the antibacterial Cu element is added to the Mg-Zn-Y-Nd alloy to make the alloy have antibacterial properties, and then through extrusion processing, the grain size is refined and the microstructure of the alloy is improved. In order to improve the mechanical properties and corrosion resistance of the alloy, the microstructure and phase composition of the alloy were analyzed by OMSEMEDS XRD, the mechanical properties of the alloy were tested by microhardness and tensile test at room temperature, and the mechanical properties of the alloy were measured by electrochemical experiment and weightlessness analysis. The corrosion resistance was tested by hydrogen evolution analysis. Finally, the antibacterial properties of the as-cast Mg-Zn-Y-Nd-xCu alloy were analyzed by in vitro antibacterial experiments. The as-cast Mg-Zn-Y-Nd-xCu alloy had coarse grains, uneven microstructure and a certain degree of dendritic segregation. The number of the second phase in the alloy gradually increased, and gradually connected to each other into a network structure. After extrusion, the grain size of the alloy was obviously refined, the structure was changed into equiaxed crystal, and most of the second phase particles were dissolved into the matrix. With the increase of Cu content, the grain size of extruded Mg-Zn-Y-Nd-xCu alloy becomes smaller, and the grain size decreases from 18 渭 m at 0.1wt.Cu to 3 渭 m.Cu at 0.5wt.Cu to form CuMg2 phase. The microstructure of the as-cast Mg-Zn-Y-Nd-xCu alloy is composed of magnesium matrix and the second phase MgZnZn-CuMg2OMg-12YZnOMg-41Nd5. After extrusion processing, the existence of binary phase of CuMg2 is detected only in the extruded Mg-Zn-Y-Nd-0.5Cu alloy. It is mainly because the alloy containing 0.1wt.Cu and 0.3wt.Cu is completely or mostly dissolved into the matrix during hot extrusion, resulting in the decrease of the volume fraction of the second phase containing Cu. No CuMg2 phase was detected. The presence of CuMg2 phase in as-cast Mg-Zn-Y-Nd-xCu alloy reduced the mechanical properties of magnesium alloy. After extrusion, the tensile strength and elongation of the alloy were obviously improved. The tensile strength of the extruded Mg-Zn-Y-Nd-0.1Cu alloy can reach 325 MPA. With the increase of Cu content, the mechanical properties of the extruded Mg-Zn-Y-Nd-0.1Cu alloy decrease gradually. Due to the addition of Cu, the CuMg2 phase is formed in the alloy. The galvanic corrosion of magnesium alloy matrix is increased, and the corrosion resistance of magnesium alloy is reduced. After extrusion, the grain size of the alloy is refined and the microstructure is uniform, and most of the second phase particles are dissolved into the matrix. The corrosion resistance of the extruded alloy is better than that of the as-cast alloy. With the increase of Cu content, the corrosion resistance of the extruded alloy decreases gradually. The antibacterial rates of extruded Mg-Zn-Y-Nd-xCu alloy against Escherichia coli and Staphylococcus aureus were above 99%, which met the requirements of class I antibacterial materials and had strong antibacterial effect. The antibacterial properties of the extruded alloy gradually increased. By extruding the Mg-Zn-Y-Nd-xCu alloy, the stability of the mechanical properties of the alloy was obtained during the limited service period. At the same time, the release of Cu ions in the degradation process has a good antibacterial effect, which provides a theoretical basis for the clinical application of magnesium alloys as medical materials.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TG146.22;R318.08
【相似文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條
1 趙盼;閻占元;程麗任;龔學(xué)鵬;;擠壓態(tài)Mg-13Li-1Al-1Ca-4Y合金的微觀組織及力學(xué)性能[J];河北師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年01期
2 權(quán)國(guó)政;陳濤;余春堂;王陽(yáng);周杰;;擠壓態(tài)42CrMo鋼熱塑性加工圖及穩(wěn)態(tài)變形參數(shù)識(shí)別[J];材料熱處理學(xué)報(bào);2013年02期
3 郭海龍;孫志超;楊合;;擠壓態(tài)7075鋁合金再結(jié)晶經(jīng)驗(yàn)?zāi)P图皯?yīng)用[J];中國(guó)有色金屬學(xué)報(bào);2013年06期
4 王煜;孫志超;李志穎;楊合;;擠壓態(tài)7075鋁合金高溫流變行為及神經(jīng)網(wǎng)絡(luò)本構(gòu)模型[J];中國(guó)有色金屬學(xué)報(bào);2011年11期
5 閻牧夫;姚忠凱;;擠壓態(tài)SiC_w/6061Al復(fù)合材料σ_(0.2)的預(yù)報(bào)模型[J];機(jī)械工程師;1993年01期
6 劉玉寶;侯小虎;;顯微組織對(duì)Al12Zn2.4Mg1.1Cu合金沉積態(tài)、擠壓態(tài)力學(xué)性能的影響[J];熱加工工藝;2012年18期
7 王興;;擠壓態(tài)Ti-46Al-5Nb-1W合金的力學(xué)性能[J];鈦工業(yè)進(jìn)展;2011年06期
8 郭詩(shī)惠;趙亞忠;潘復(fù)生;;稀土釹對(duì)擠壓態(tài)ZM21鎂合金組織性能的影響[J];熱加工工藝;2012年16期
9 邱克強(qiáng);郭強(qiáng);熱焱;尤俊華;任英磊;李榮德;;熱處理對(duì)擠壓態(tài)Mg-5Sn-2Si-2Sr合金組織及性能的影響[J];材料熱處理學(xué)報(bào);2013年10期
10 錢(qián)佳;;添加稀土Ce對(duì)擠壓態(tài)Mg-6Al-0.5Y合金組織的影響[J];熱加工工藝;2011年23期
中國(guó)重要會(huì)議論文全文數(shù)據(jù)庫(kù) 前2條
1 楊艷;彭曉東;謝衛(wèi)東;;擠壓態(tài)Mg-9Li-3Al-xSr鎂合金的組織與性能研究[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年
2 毛萍莉;劉正;王長(zhǎng)義;王峰;;擠壓態(tài)AM30鎂合金高速?zèng)_擊載荷下的失效形式及斷裂形貌分析[A];中國(guó)有色金屬學(xué)會(huì)第十四屆材料科學(xué)與合金加工學(xué)術(shù)年會(huì)論文集[C];2011年
中國(guó)博士學(xué)位論文全文數(shù)據(jù)庫(kù) 前1條
1 鐘麗萍;稀土鎂合金導(dǎo)熱性能及高導(dǎo)熱鎂合金研究[D];重慶大學(xué);2016年
中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前10條
1 幸侃;熱處理對(duì)擠壓態(tài)Mg-Zn-Y合金組織和性能的影響[D];華南理工大學(xué);2015年
2 趙U,
本文編號(hào):1549536
本文鏈接:http://www.sikaile.net/yixuelunwen/swyx/1549536.html