酸敏感離子通道的裝配及其在海馬神經(jīng)元樹突發(fā)育中的作用
[Abstract]:Acid-sensitive ion channels (ASICs) are a class of extracellular proton-activated cationic channels that are widely distributed in the nervous system and possess various physiological and pathological functions, such as tactile, taste, vision, pain, synaptic plasticity, learning and memory, cerebral ischemia and epilepsy. Six ASIC subunits encoding four genes, ASIC1a and its spliced variants ASIC1b, ASIC2a and their spliced variants ASIC2b, ASIC3 and ASIC4, were cloned and expressed in central neurons. ASIC1a is the main functional subunit. ASIC1a homopolymer channel mediates a fast, instantaneous inward current that permeates sodium and calcium ions. Semi-maximum activation pH (pH_ (0.5)) of ~6.2. ASIC2a homopolymer channel is insensitive to protons, and pH_ (0.5) of ~4.4. ASIC2b does not form a functional homopolymer channel, but can form other channels. Functional ASICCs are generally considered to be tetramers formed by the same or different subunits. However, recent crystal structure studies such as Gouaux have shown that ASIC1 homomers are assembled by three subunits.
Recent studies have shown that ASICs play an important role in the central nervous system, involved in synaptic plasticity, learning and memory, and axonal degeneration. A recent study in the hippocampal slices showed that ASIC1a subunit localized on the dendritic spine can affect the density of the dendritic spine, inhibit the expression of ASIC1a and reduce the number of dendritic spines, while overexpression of ASIC1 in the amygdala and other brain regions can enhance the background-conditioned fear. One year later, the effect was reversed by influencing intracellular Ca ~ (2+) concentration and CaMK II phosphorylation. Friese et al. (2007) found that compared with wild-type mice, experimental autoimmune encephalomyelitis (EAE) significantly reduced clinical deficiency and axonal degeneration, suggesting that ASIC1 participated in central nervous system autoimmune inflammation. The axons degenerate.
In this paper, we investigated the assembly of acid-sensitive ion channels in living cells and the role of acid-sensitive ion channels in hippocampal neuronal burst development.
1. to study the assembly of acid sensing ion channels by fluorescence resonance energy transfer (FRET) method.
The classical methods, such as immunoprecipitation or electrophysiological analysis, suggest that most subunits can form homopolymers or heteromeric complexes. However, it is not clear about the ASICs subunit assembly in living cells and the molecular ratio of each subunit in ASICs heteromers. In this study, we used a biophysical method, fluorescence. Fluorescence Resonance Energy Transfer (FRET) directly studies ASICs assembly in living cells. Because of its non-invasive nature, FRET can analyze protein-protein interactions in living cells and has high spatial resolution, it has been successfully applied in many fields. In the study of receptor-channel molecule ratio and assembly, we labeled CFP and YFP on the carboxyl end of various ASICs subunits, then transfected these constructions into CHO cells. FRET values were calculated by three-channel FRET imaging, and FRET efficiencies between adjacent subunits were deduced from the established tetramer or trimer FRET model. The results showed that significant FRET signals could be detected when the same subunit of CFP and YFP was co-expressed either in the tetramer FRET model or in the trimer FRET model, indicating that ASIC subunits could be assembled into synaptic channels, and significant FRET signals could also be detected when different subunits of CFP and YFP were co-expressed in CHO cells. In addition, the molecule ratio of ASIC heteromers was also preliminarily discussed. It was found that if the ASIC heteromer channel was tetramer, each subunit had two, the molecule ratio tended to be 2:2; if it was trimer, ASICs assembly was random. This study provides some new evidence for ASIC homopolymer and heteromer assembly. This difference in subunit composition forms the functional heterogeneity of ASICs and largely forms the intrinsic structural basis for the diverse and complex physiological functions of ASICs.
2. the role of acid sensing ion channels in the development of dendrites in hippocampal neurons
The growth and branching of dendrites are important for the formation of functional neural networks, but the role of ASICs in tree burst development is rarely reported. Function: To observe the dendritic growth and branching complexity of hippocampal neurons at the time points of DIV8 and DIV14, and to study whether acid-sensitive ion channels affect the dendritic development of hippocampal neurons. ASICs are involved in regulating the development of dendrites, which will help to understand how acid-sensitive ion channels affect the formation of neural networks and thus participate in higher brain functions such as learning and memory.
【學位授予單位】:浙江大學
【學位級別】:博士
【學位授予年份】:2008
【分類號】:R33
【相似文獻】
相關(guān)期刊論文 前10條
1 王健偉,姜慧英,屈建國,趙同興,洪濤;在昆蟲細胞中同時表達藍舌病毒VP3與VP7蛋白可裝配成核心樣顆粒[J];病毒學報;2000年02期
2 楊開平;;裝拆螺紋聯(lián)接的一些經(jīng)驗做法[J];科技信息;2010年08期
3 姜明,汝少國,李永祺,謝嘉琳;中國對蝦(Penaeus chinensis)核包涵體型桿狀病毒裝配的電鏡觀察[J];海洋湖沼通報;1996年04期
4 陳彩梅;;煤礦常用軸類零件的修理與裝配[J];科技情報開發(fā)與經(jīng)濟;2006年15期
5 丁雁;;細胞能重新裝配嗎?[J];科學大眾(中學版);1963年12期
6 孫亮;“開關(guān)”問題的數(shù)值方法及在資料變分同化中的應用[J];科技通報;2003年05期
7 楊國慶;劉平;;基于Pro/E的漸開線圓柱齒輪的參數(shù)化建模及其裝配[J];湘潭師范學院學報(自然科學版);2006年03期
8 康國;;K203底盤中后橋主減速器及差速器的裝配與調(diào)整[J];中國科技信息;2006年16期
9 馮剛;;淺談葉片泵的故障原因分析與檢修方法[J];科協(xié)論壇(下半月);2008年10期
10 戴卓捷,楊光明;細菌粘附素的分子結(jié)構(gòu)和裝配機制[J];微生物學免疫學進展;2001年03期
相關(guān)會議論文 前10條
1 徐天樂;;酸敏感離子通道非質(zhì)子配體的發(fā)現(xiàn)[A];第十一次中國生物物理學術(shù)大會暨第九屆全國會員代表大會摘要集[C];2009年
2 李偉廣;于燁;曹慧;徐天樂;;酸敏感離子通道的化學調(diào)控與功能研究[A];中國生理學會第十一屆張錫鈞基金全國青年優(yōu)秀生理學學術(shù)論文交流及評獎會議綜合摘要[C];2011年
3 段波;;中樞神經(jīng)系統(tǒng)酸敏感離子通道敏感化機制的研究[A];中國生理學會張錫鈞基金會第十屆全國青年優(yōu)秀生理學學術(shù)論文綜合摘要[C];2009年
4 楊達偉;沈霖霖;宋元林;白春學;;外周酸敏感離子通道抑制劑對酸吸入所致急性肺損傷動物模型中的保護作用[A];中華醫(yī)學會呼吸病學年會——2011(第十二次全國呼吸病學學術(shù)會議)論文匯編[C];2011年
5 羿菲;麻彤輝;;酸敏感離子通道ASIC1a抑制劑高通量篩選模型的研究[A];吉林省第六屆生命科學大型學術(shù)報告會論文集[C];2008年
6 張靜;劉瑋孟;楊倩;陶爭榮;沈軍達;田勇;王德前;盧立志;;離子通道的研究進展[A];全國動物生理生化第十次學術(shù)交流會論文摘要匯編[C];2008年
7 宋娜娜;杜綺鈞;江曉燕;耿文葉;張桂紅;周望;李莉;朱大年;沈霖霖;;酸敏感離子通道1介導下丘腦外側(cè)區(qū)orexin神經(jīng)元對呼吸的調(diào)節(jié)[A];中國生理學會第23屆全國會員代表大會暨生理學學術(shù)大會論文摘要文集[C];2010年
8 胡榮;盧佳友;吳南;孟輝;羅海水;徐天樂;林江凱;朱剛;馮華;;酸敏感離子通道ASIC1a在脊髓損傷中的作用研究[A];中國醫(yī)師協(xié)會神經(jīng)外科醫(yī)師分會第四屆全國代表大會論文匯編[C];2009年
9 馬強;王鑫巖;李雅冰;蘇星光;金欽漢;;兩種半導體納米粒子之間熒光共振能量轉(zhuǎn)移的研究[A];第八屆全國發(fā)光分析暨動力學分析學術(shù)研討會論文集[C];2005年
10 徐天樂;;酸敏感離子通道與疾病[A];生物膜與重大疾病學術(shù)研討會論文集[C];2004年
相關(guān)重要報紙文章 前10條
1 記者 孫紅;優(yōu)先裝配玉柴機[N];中國汽車報;2001年
2 劉彥平;裝配強勁電子商務“引擎”[N];中國財經(jīng)報;2000年
3 徐敏榮;家庭影院如何按檔次裝配[N];中國消費者報;2000年
4 程遠;沒搞配套零部件,,就是裝配公司嗎?[N];經(jīng)濟日報;2002年
5 ;普利司通/凡世通輪胎出問題 中國車主可以就地免費改換[N];中國汽車報;2000年
6 記者 王方杰;今年解決十萬殘疾人溫飽[N];人民日報;2002年
7 本報記者 孟莉;氣囊企業(yè)的尷尬說明了什么?[N];中國汽車報;2001年
8 高力;石東毅;眼鏡,何時讓人看清你[N];中國質(zhì)量報;2002年
9 珊苑;加快科技創(chuàng)新 服務市民健康[N];無錫日報;2009年
10 ;“走出去”戰(zhàn)略與實務[N];中國貿(mào)易報;2000年
相關(guān)博士學位論文 前10條
1 高英;酸敏感離子通道的裝配及其在海馬神經(jīng)元樹突發(fā)育中的作用[D];浙江大學;2008年
2 顧玲;缺血再灌注中酸敏感離子通道引起神經(jīng)元損傷機制及葛根素保護作用的研究[D];浙江大學;2010年
3 鐘小文;中藥骨康對去勢大鼠血清缺氧誘導因子和酸敏感離子通道影響的實驗研究[D];廣州中醫(yī)藥大學;2011年
4 楊杰;腫瘤細胞基質(zhì)金屬蛋白酶活性的動態(tài)光學成像[D];華中科技大學;2006年
5 張敏;大鼠下丘神經(jīng)元上酸敏感離子通道功能特性的研究[D];中國科學技術(shù)大學;2008年
6 劉天才;殼核型量子點的合成及其生物應用[D];華中科技大學;2006年
7 王海橋;核殼型CdSe/ZnS量子點在生物分析中的應用[D];華中科技大學;2008年
8 張峰;應用熒光共振能量轉(zhuǎn)移技術(shù)研究Dok分子的異源及同源相互作用[D];第二軍醫(yī)大學;2006年
9 夏方詮;單細胞分析的新方法和腎上腺素細胞傳感器[D];山東大學;2005年
10 邱爽;NMDA受體亞單位裝配、運輸以及膜表面表達的分子機制[D];浙江大學;2007年
相關(guān)碩士學位論文 前10條
1 程慧嫻;酸敏感離子通道1a在大鼠全腦缺血再灌注損傷中的作用[D];南京大學;2012年
2 邱春玉;PK2增強大鼠背根神經(jīng)節(jié)神經(jīng)元酸敏感離子通道活動[D];武漢體育學院;2012年
3 張騰躍;酸敏感離子通道阻斷劑阿米洛利對佐劑性關(guān)節(jié)炎大鼠關(guān)節(jié)軟骨的保護作用及部分機制研究[D];安徽醫(yī)科大學;2010年
4 周新娣;嗎啡對酸敏感離子通道功能與表達的調(diào)節(jié)作用及機制[D];華中科技大學;2011年
5 步月華;CdTe與Au之間的熒光共振能量轉(zhuǎn)移研究[D];天津工業(yè)大學;2006年
6 付輝;洪汝河臨時擋水設(shè)施研究[D];合肥工業(yè)大學;2006年
7 鄒申;流動注射化學發(fā)光及熒光共振能量轉(zhuǎn)移的應用研究[D];吉林大學;2008年
8 陳香紅;原花青素對大鼠腦缺血再灌注后代謝障礙及酸敏感離子通道1a表達的影響[D];鄭州大學;2008年
9 齊小娟;用熒光共振能量轉(zhuǎn)移技術(shù)構(gòu)建的蛋白酶檢測器[D];浙江大學;2005年
10 馬s
本文編號:2217547
本文鏈接:http://www.sikaile.net/yixuelunwen/shiyanyixue/2217547.html