天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 醫(yī)學論文 > 泌尿論文 >

間充質干細胞通過活化M2型巨噬細胞減輕急性腎損傷的機制研究

發(fā)布時間:2018-07-11 17:27

  本文選題:間充質干細胞 + 橫紋肌溶解; 參考:《中國人民解放軍醫(yī)學院》2014年博士論文


【摘要】:研究背景橫紋肌溶解(rhabdomyolysis,RM)指任何原因引起的廣泛的橫紋肌細胞壞死,肌細胞內容物外漏至細胞外液及血液循環(huán)中,導致急性腎損傷(acute kidney injury, AKI)、電解質紊亂等一系列并發(fā)癥,重癥患者預后極差。與肌紅蛋白尿相關的AKI是創(chuàng)傷和非創(chuàng)傷性橫紋肌溶解最嚴重的并發(fā)癥,現(xiàn)有治療無法根本改善其預后。如何提高RM后腎小管上皮細胞壞死的修復再生、降低AKI死亡率,一直是醫(yī)學界研究的重大課題。近年來骨髓間充質干細胞(mesenchymal stem cells, MSCs)在急慢性腎臟病中的應用日益受到關注,給AKI的治療指明新的方向。多項研究均證實,MSCs治療可明顯改善腎小管損傷并有利于腎功能的恢復。巨噬細胞是天然免疫系統(tǒng)中重要的調節(jié)細胞,可分為經典活化的M1型巨噬細胞和替代性活化的M2型巨噬細胞兩種極性狀態(tài)。M2型巨噬細胞具有抑制炎癥反應,促進組織重塑和再生修復的功能。體外研究中MSCs可與巨噬細胞相互作用,促進M2型巨噬細胞的產生。那么,誘導M2型巨噬細胞的生成是否是MSCs減輕AKI的機制?目前尚無相關報道。本研究旨在建立RM所致AKI的小鼠動物模型,探討MSCs是否通過誘導M2型巨噬細胞的生成來減輕AKI,為闡明MSCs治療減輕AKI的機制提供理論依據(jù)。 方法第一部分C57BL/6小鼠經雙下肢肌肉注射50%甘油8ml/kg建立RM所致AKI模型,觀察第6h、12h、24h、48h、72h、96h、120h和168h時間點血尿素氮(BUN)、肌酐(Cr)和磷酸肌酸激酶(CK)的變化趨勢,以及腎臟、肌肉和肺臟的病理改變。將C57BL/6小鼠隨機分為Sham+生理鹽水(NS)組、Sham+MSCs組、RM+NS組和RM+MSCs組。6小時后,MSCs組給予1×106個紅色熒光蛋白(RFP)標記的C57BL/6小鼠骨髓來源的MSCs尾靜脈注射, NS組給予等體積的生理鹽水尾靜脈注射;(1)生化檢測血BUN、Cr和CK水平(n=10);(2)酶聯(lián)免疫吸附測定法(ELISA)檢測血清細胞因子IL-6、TNF-α和IL-10水平(n=5);(3)光鏡觀察肌肉和腎臟病理損傷程度,計算腎小管壞死評分(n=4);(4)PCNA免疫組化評價腎小管上皮細胞損傷后增殖情況(n=5);(5)雙光子顯微鏡檢測RFP標記的MSCs在RM模型小鼠各器官的定植情況(n=3)。 第二部分C57BL/6小鼠經50%甘油8ml/kg肌肉注射建立RM模型,隨機分為RM+NS組和RM+MSCs組,n=5。取第24h、48h和72h的腎臟組織,免疫熒光技術檢測巨噬細胞(F4/80)浸潤數(shù)量的變化和M2型巨噬細胞(CD206)浸潤數(shù)量的變化;Western Blot檢測橫紋肌溶解后不同時間點的腎臟組織M2型巨噬細胞標志物CD206的表達水平。第24小時,Western Blot檢測sham+NS組、sham+MSCs組、RM+NS組和RM+MSCs組的M2型巨噬細胞標志物CD206表達情況。在損傷后第24小時,以MSCs治療的橫紋肌溶解AKI小鼠為研究對象,使用氯屈膦酸二鈉脂質體清除其體內的巨噬細胞,空白脂質體作為對照,觀察兩組小鼠在第48h和72h血BUN、Cr和腎臟病理的改變。 第三部分將小鼠巨噬細胞系RAW264.7細胞分為三組:常規(guī)培養(yǎng)的細胞為M0組,脂多糖(LPS)2.5ug/ml刺激2h的細胞為M1組,LPS刺激后并與MSCs共培養(yǎng)72小時的細胞為M2組。使用細胞免疫熒光檢測三組細胞的巨噬細胞表面標志物F4/80和M2型巨噬細胞表面標志物CD206的表達,流式細胞技術檢測各組的CD206和IL-10表達,ELISA檢測不同時間點培養(yǎng)液上清IL-6、TNF-α和IL-10的水平(n=5)。使用氯膦酸二鈉脂質體清除小鼠體內巨噬細胞,然后建立橫紋肌溶解AKI模型,并隨即尾靜脈注射1×107個M0組、M1組和M2組的RAW264.7細胞(n=5)。在AKI的第72h檢測血BUN、Cr和腎臟病理。 結果本研究第一部分,成功建立了C57BL/6小鼠RM所致AKI模型,損傷后血BUN、Cr和CK進行性升高,并觀察到CK于第24小時達峰值,BUN和Cr于第72小時達峰值的趨勢。第6h經尾靜脈注射1×106個MSCs或等體積的NS對照,發(fā)現(xiàn)MSCs治療使RM小鼠血BUN、Cr和CK水平明顯下降(P0.01),,血促炎細胞因子IL-6和TNF-α的水平明顯下降(P0.01),血抑炎細胞因子IL-10的水平明顯升高(P0.01)。腎組織PAS染色顯示RM+MSCs組的腎小管損傷減輕,腎小管壞死評分下降。PCNA免疫組化見RM+MSCs組的腎小管上皮細胞明顯增生。雙光子顯微鏡活體檢測MSCs主要定植在肺臟和肌肉,腎臟未發(fā)現(xiàn)RFP標記的MSCs,并用組織免疫熒光證實。 本研究第二部分,組織免疫熒光發(fā)現(xiàn)RM發(fā)生后,腎臟的巨噬細胞浸潤逐漸增加,RM+MSCs組腎組織CD206陽性的M2型巨噬細胞提前出現(xiàn)。WesternBlot證實RM+MSCs組腎臟M2型巨噬細胞標志物CD206的表達水平顯著高于RM+NS組(P0.01),且表達在損傷后呈上升趨勢。不同組腎臟CD206表達分析發(fā)現(xiàn):損傷后第24小時,僅RM+MSCs組出現(xiàn)CD206的明顯表達(P0.01)。MSCs治療AKI小鼠的巨噬細胞清除實驗證實,在第24小時清除M2型巨噬細胞使第48h和72h小鼠的血BUN和Cr再次升高,伴腎臟損傷病理加重。 本研究第三部分,細胞免疫熒光檢測M0組、M1組及M2組的RAW264.7細胞均表達F4/80,僅M2組高表達CD206。流式細胞技術檢測發(fā)現(xiàn)M2組的RAW264.7細胞高表達CD206和IL-10。ELISA測定RAW264.7培養(yǎng)液上清細胞因子濃度,LPS使IL-6和TNF-α的水平升高,MSCs使IL-6和TNF-α的水平降低、IL-10的水平升高(P0.01)。氯屈膦酸二鈉脂質體清除小鼠體內的巨噬細胞后建立橫紋肌溶解AKI模型,空白脂質體作為對照組,給予不同組巨噬細胞過繼轉移,損傷后第72小時發(fā)現(xiàn)接受M2組RAW264.7細胞小鼠的血清BUN、Cr和病理損傷均較對照組、M0組和M1組明顯減低(P0.01)。 結論(1)MSCs治療可調節(jié)體內炎癥反應,減輕RM所致AKI;(2)MSCs不通過直接定植于腎臟發(fā)揮保護作用;(3)MSCs治療促進腎臟M2型巨噬細胞浸潤的數(shù)量增加,清除巨噬細胞使已減輕的腎損傷再次加重(4)MSCs可在體外誘導巨噬細胞向M2型的轉換。(5)過繼轉移M2型巨噬細胞可改善RM所致的AKI。
[Abstract]:Background rhabdomyolysis (rhabdomyolysis, RM) refers to a wide range of rhabdomyocyte necrosis caused by any cause, muscle cell contents leaking into extracellular fluid and blood circulation, causing acute renal injury (acute kidney injury, AKI), electrolyte disorder and a series of disorders. The prognosis of severe patients is very poor. The AKI related to myoglobin urine is very poor. It is the most serious complication of traumatic and non traumatic rhabdomyolysis. Existing treatment can not improve its prognosis. How to improve the repair and regeneration of tubular necrosis of renal tubular cells after RM and reduce the mortality of AKI has been a major issue in the medical field. In recent years, bone marrow mesenchymal stem cells (mesenchymal stem cells, MSCs) are in acute and chronic kidney. A number of studies have confirmed that MSCs therapy can obviously improve renal tubular injury and benefit the recovery of renal function. Macrophages are important regulatory cells in the natural immune system, which can be divided into classical activated M1 type macrophages and alternative activated M2 type megagagi. .M2 type macrophages of two polar states have the function of inhibiting inflammatory response and promoting tissue remodeling and regeneration. In vitro, MSCs can interact with macrophages to promote the production of M2 type macrophages. Then, is the mechanism of inducing M2 type macrophages to be a mechanism for MSCs to reduce AKI? There is no related report. This study aims at this study. In the establishment of a mouse model of AKI induced by RM, it is discussed whether or not MSCs reduces AKI by inducing the formation of M2 type macrophages, providing a theoretical basis for clarifying the mechanism of MSCs therapy to alleviate AKI.
Methods in part 1, C57BL/6 mice were injected with 50% glycerol 8ml/kg to establish a RM induced AKI model, and the changes in blood urea nitrogen, creatinine and creatine kinase were observed at 6h, 12h, 24h, 48h, 72h, 96h, 120h and 168h time, and the pathological changes of the kidney, muscle and lungs. After.6 hours in group NS, group Sham+MSCs, group RM+NS and RM+MSCs, group MSCs was given MSCs tail vein of bone marrow of C57BL/6 mice with 1 x 106 red fluorescent protein (RFP) labeled C57BL/6 mice, and NS group was given equal volume of saline tail vein, and (1) biochemical test of BUN, Cr and levels; (2) enzyme linked immunosorbent assay Test serum cytokine IL-6, TNF- alpha and IL-10 level (n=5); (3) observe pathological damage of muscle and kidney and calculate renal tubular necrosis score (n=4); (4) PCNA immunohistochemistry to evaluate the proliferation of renal tubular epithelial cells (n=5); (5) double light microscopy detection of MSCs in RFP markers in each organ of RM model mice Condition (n=3).
The second part of C57BL/6 mice were injected with 50% glycerol and 8ml/kg to establish RM model. They were randomly divided into group RM+NS and RM+MSCs group. N=5. took the renal tissue of 24h, 48h and 72h. The changes in the number of macrophage (F4/80) infiltration and the quantity of M2 macrophage (CD206) were detected by immunofluorescence. The expression level of M2 type macrophage marker CD206 of the kidney tissue at the same time. Twenty-fourth hours, Western Blot was used to detect the expression of CD206 expression of M2 type macrophage markers in group sham+NS, sham+MSCs, RM+NS and RM+MSCs. Twenty-fourth hours after the injury, AKI mice were dissolved in the rhabdomydric acid two with MSCs treatment, and chlordric acid two was used. Sodium liposomes scavenged macrophages in vivo and blank liposomes as controls. The changes of BUN, Cr and renal pathology in 48h and 72h blood of two groups of mice were observed.
In the third part, the mouse macrophage RAW264.7 cells were divided into three groups: the conventional cultured cells were group M0, the lipopolysaccharide (LPS) 2.5ug/ml stimulated 2H cells in the M1 group, and the LPS stimulated and the MSCs co cultured for 72 hours was the M2 group. The macrophage surface markers, F4/80 and M2 macrophages, were detected by cell immunofluorescence. The expression of surface marker CD206, CD206 and IL-10 expression in each group were detected by flow cytometry. ELISA was used to detect the level of IL-6, TNF- A and IL-10 (n=5) at different time points. Chlorphosphonic acid two sodium liposomes were used to remove macrophages in mice, and then a rhabdomyolysis AKI model was established, and then 1 x 107 M0 groups were injected into the tail vein, M1. M1 RAW264.7 cells (n=5) in group M2 and group AKI were detected in BUN, Cr and renal pathology at 72h of AKI.
Results in the first part of this study, the AKI model induced by RM in C57BL/6 mice was successfully established. The blood BUN, Cr and CK were increased after injury, and the peak value of CK at twenty-fourth hours was observed, and the peak value of BUN and Cr at seventy-second hours was reached. 1 * 106 MSCs or equal volume NS controls were injected through the tail vein. Significantly decreased (P0.01), blood proinflammatory cytokines IL-6 and TNF- alpha significantly decreased (P0.01), the level of blood suppressor cell factor IL-10 increased significantly (P0.01). Renal tissue PAS staining showed that renal tubule injury in group RM+MSCs was reduced, renal tubular necrosis score decreased in.PCNA immunization, and the renal tubular epithelial cells in the RM+MSCs group were obviously proliferated. In vivo, MSCs was mainly colonized in lungs and muscles, and no RFP labeled MSCs was found in the kidneys. The results were confirmed by tissue immunofluorescence.
In the second part of this study, tissue immunofluorescence found that the infiltration of macrophages in the kidneys increased gradually, and the CD206 positive M2 macrophages in the RM+MSCs group showed.WesternBlot in group RM+MSCs, which showed that the expression level of CD206 of the M2 type macrophage marker in the RM+MSCs group was significantly higher than that in the RM+NS group (P0.01), and the expression increased after the injury. Trend. CD206 expression analysis in different groups of kidneys found that twenty-fourth hours after injury, only RM+MSCs group showed CD206 obvious expression (P0.01).MSCs treatment of AKI mice macrophage clearance experiment confirmed that the clearance of M2 type macrophages in twenty-fourth hours made 48h and 72h mice blood BUN and Cr increased again, with the pathological aggravation of renal injury.
The third part of this study, cell immunofluorescence test M0 group, M1 group and M2 group RAW264.7 cells all express F4/80, only M2 group high expression CD206. flow cytometry detection found that RAW264.7 cells in M2 group high expression CD206 and IL-10.ELISA determine the concentration of cell factor in the RAW264.7 culture liquid supernatant. The level of F- alpha and the level of IL-10 increased (P0.01). After scavenging of chlordronic acid two liposomes, the rhabdomyolysis AKI model was established. The blank liposomes were used as the control group, and the macrophages were adoptive and transferred in different groups. The serum BUN, Cr and pathological lesion of the M2 group RAW264.7 cell mice were found after seventy-second hours of injury. The injury was significantly lower in the M0 group and the M1 group than in the control group (P0.01).
Conclusion (1) MSCs therapy can regulate the inflammatory response in the body and reduce the AKI caused by RM; (2) MSCs does not use the direct colonization of the kidney to protect the kidney; (3) MSCs therapy promotes the increase in the number of M2 macrophage infiltration in the kidney, and clears the macrophages to aggravate the reduced renal injury (4) MSCs can induce the conversion of macrophage to M2 type in vitro. 5) adoptive transfer of M2 macrophages can improve the AKI. induced by RM.
【學位授予單位】:中國人民解放軍醫(yī)學院
【學位級別】:博士
【學位授予年份】:2014
【分類號】:R692

【相似文獻】

相關期刊論文 前10條

1 葉天星,曹雪濤;巨噬細胞作用的新概念:正反兩面性[J];國外醫(yī)學(免疫學分冊);1990年02期

2 彭則;呼吸道細菌感染及在巨噬細胞上的信息傳遞途徑[J];國外醫(yī)學.呼吸系統(tǒng)分冊;1999年01期

3 付平,許國章;巨噬細胞與腎損傷[J];國外醫(yī)學.泌尿系統(tǒng)分冊;2000年06期

4 夏飛,劉勝武,魏雅稚,肖凌;結核分枝桿菌誘導宿主巨噬細胞凋亡機制初探[J];中華微生物學和免疫學雜志;2005年06期

5 葛晶;成蓓;;過氧化物酶體增殖體激活受體和肝X受體對巨噬細胞作用的研究進展[J];國外醫(yī)學(老年醫(yī)學分冊);2006年01期

6 張鳳;熊思東;;巨噬細胞的極化及其意義[J];細胞生物學雜志;2007年01期

7 韓君勇;李艷波;;不同壓力對巨噬細胞ATP結合盒轉運子A_1表達的影響[J];中國心血管病研究;2008年05期

8 熊思東;;疾病發(fā)病中的巨噬細胞極化:機制與作用[J];現(xiàn)代免疫學;2010年05期

9 吳虢東;張才軍;王玲;吳磊;寸新華;曹霞;;抗結核天然藥物篩選的巨噬細胞模型研究[J];昆明醫(yī)學院學報;2010年11期

10 李丹;任亞娜;范華驊;;巨噬細胞的分類及其調節(jié)性功能的差異[J];生命科學;2011年03期

相關會議論文 前10條

1 宋盛;周非凡;邢達;;PDT誘導的凋亡細胞對巨噬細胞NO合成的影響[A];第七屆全國光生物學學術會議論文摘要集[C];2010年

2 張磊;朱建華;黃元偉;姚航平;;血管緊張素Ⅱ對巨噬細胞(THP-1重細胞)凝集素樣氧化低密度脂蛋白受體表達的影響[A];浙江省免疫學會第五次學術研討會論文匯編[C];2004年

3 宋盛;邢達;周非凡;;PDT誘導的凋亡細胞對巨噬細胞NO合成的影響[A];第十一次中國生物物理學術大會暨第九屆全國會員代表大會摘要集[C];2009年

4 趙莉;姚樹桐;田華;楊娜娜;桑慧;焦鵬;王義圍;秦樹存;;氧化高密度脂蛋白通過內質網應激凋亡途徑誘導巨噬細胞凋亡[A];第十二屆全國脂質與脂蛋白學術會議論文匯編[C];2014年

5 洪敏;余黎;華永慶;朱荃;;雌二醇激活巨噬細胞及內異癥藥物效應靶點的研究[A];中國藥理學會第八次全國代表大會暨全國藥理學術會議論文摘要匯編[C];2002年

6 唐瀾;王麗;付度關;趙勇;曾和松;;瘦素對巨噬細胞白介素-1表達的影響[A];中華醫(yī)學會心血管病學分會第八次全國心血管病學術會議匯編[C];2006年

7 郭紫芬;袁皓瑜;郭琰;庹勤慧;廖端芳;;依澤替米貝通過調控基因表達抑制巨噬細胞內脂質蓄積[A];第七屆海峽兩岸心血管科學研討會論文集[C];2009年

8 王少霞;李楊;楊蕾蕾;左紅艷;劉肖;徐新萍;王德文;;極低頻電磁場暴露對大鼠肺組織中巨噬細胞的影響[A];第十三屆中國體視學與圖像分析學術會議論文集[C];2013年

9 丁晨光;田普訓;薛武軍;鄭瑾;段萬里;趙艷龍;席敏;李楊;;Treg誘導巨噬細胞向M2型轉化的作用研究[A];2013中國器官移植大會論文匯編[C];2013年

10 呂建新;金麗琴;袁謙;金晶;彭穎;李東;;巨噬細胞激活的標志物研究[A];新世紀 新機遇 新挑戰(zhàn)——知識創(chuàng)新和高新技術產業(yè)發(fā)展(上冊)[C];2001年

相關重要報紙文章 前10條

1 通訊員 李靜 記者 胡德榮;惡性腫瘤巨噬細胞未必皆“惡人”[N];健康報;2014年

2 蘭克;以嘗試用巨噬細胞治癱瘓[N];科技日報;2000年

3 薛佳;免疫系統(tǒng)——人體的“衛(wèi)士”[N];保健時報;2009年

4 侯嘉 何新鄉(xiāng);硒的神奇功能[N];中國食品質量報;2003年

5 記者 胡德榮;鐵泵蛋白“維穩(wěn)”鐵代謝作用首次闡明[N];健康報;2011年

6 唐穎 倪兵 陳代杰;巨噬細胞泡沫化抑制劑研究快步進行[N];中國醫(yī)藥報;2006年

7 劉元江;新發(fā)現(xiàn)解釋腫瘤為何易成“漏網之魚”[N];醫(yī)藥經濟報;2007年

8 本報記者 侯嘉 通訊員 何新鄉(xiāng);今天你補硒了嗎[N];醫(yī)藥經濟報;2003年

9 左志剛;升血小板藥使用注意[N];醫(yī)藥養(yǎng)生保健報;2007年

10 記者 許琦敏;“鐵泵”蛋白幫助回收鐵元素[N];文匯報;2011年

相關博士學位論文 前10條

1 戴菱菱;巨噬細胞的替代激活抑制脂毒性引起的巨噬細胞死亡[D];中南大學;2013年

2 馬翠卿;GAS下調巨噬細胞炎癥因子的作用及機制研究[D];河北醫(yī)科大學;2011年

3 黃亞東;兔不同亞型單核/巨噬細胞與動脈粥樣硬化發(fā)病關系的研究[D];中國協(xié)和醫(yī)科大學;1991年

4 劉灝;巨噬細胞再極化[D];重慶醫(yī)科大學;2011年

5 高飛;年齡相關性巨噬細胞極化對骨修復再生作用的研究[D];華中科技大學;2013年

6 劉芳;ABCG1基因表達對巨噬細胞功能影響及在動脈粥樣硬化中作用的研究[D];北京協(xié)和醫(yī)學院;2014年

7 周江睿;神經肽Y對巨噬細胞炎性因子和小分子炎癥介質的調節(jié)及機制研究[D];第二軍醫(yī)大學;2012年

8 趙魯杭;黃芪多糖的制備及其對巨噬細胞和樹突狀細胞免疫功能的影響[D];浙江大學;2011年

9 潘宇飛;信號調節(jié)蛋白α調節(jié)腫瘤相關巨噬細胞功能的作用與機制研究[D];第二軍醫(yī)大學;2013年

10 陸寧;巨噬細胞中表皮生長因子受體激活對細胞因子及實驗性結腸炎的調節(jié)作用[D];天津醫(yī)科大學;2014年

相關碩士學位論文 前10條

1 蔣璐;運動對大鼠巨噬細胞游離鐵代謝的影響及機制探討[D];江蘇大學;2007年

2 朵瑞雪;免疫突觸的形成對類風濕關節(jié)炎中巨噬細胞凋亡率影響的研究[D];第四軍醫(yī)大學;2011年

3 劉丹霞;結核桿菌對感染宿主巨噬細胞應激的調控作用及其機制研究[D];石河子大學;2013年

4 陳南鵬;腫瘤相關巨噬細胞的定量蛋白質組學研究[D];暨南大學;2011年

5 謝燕霞;蘆筍多糖對巨噬細胞的免疫調節(jié)研究[D];山東師范大學;2008年

6 劉譯聰;巴西天然蜂膠對牙齦卟啉單胞菌激活的巨噬細胞極化的調控及機制探討[D];吉林大學;2014年

7 文明智;紅霉素對香煙刺激的人巨噬細胞炎癥介質的影響[D];廣西醫(yī)科大學;2010年

8 葉金善;環(huán)氧化酶-2/前列腺素E_2在血管緊張素Ⅱ刺激巨噬細胞表達細胞外基質金屬蛋白酶誘導因子中的作用[D];第三軍醫(yī)大學;2010年

9 閆坤;前列腺素E1對小鼠子宮巨噬細胞表型和功能活性的影響[D];河南師范大學;2011年

10 汪韶君;扇貝裙邊糖胺聚糖對巨噬細胞脂蛋白代謝及脂蛋白受體表達的影響研究[D];青島大學;2006年



本文編號:2116024

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/yixuelunwen/mjlw/2116024.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶02d60***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com