間充質(zhì)干細胞肝向分化特異性microRNA表達譜的鑒定及功能學(xué)研究
本文選題:microRNA + 肝細胞; 參考:《第四軍醫(yī)大學(xué)》2013年博士論文
【摘要】:【背景】 終末期肝病在我國的發(fā)病率呈逐年增高趨勢,年死亡率達30-50%。原位肝移植是目前治療終末期肝病的唯一有效手段。但是供肝缺乏為原位肝移植治療的瓶頸。此外原位肝移植治療費用昂貴、術(shù)后需長期使用免疫抑制劑、圍手術(shù)期風(fēng)險大等問題,極大限制了原位肝移植的廣泛應(yīng)用。 成體干細胞在體內(nèi)外均可以突破胚層的限制,分化為具有功能的肝細胞。因此,成體干細胞移植技術(shù)成為一種新興的終末期肝病治療技術(shù)。但是其向肝細胞分化的機制仍不清楚。傳統(tǒng)的誘導(dǎo)手段復(fù)雜、誘導(dǎo)周期長、分化效率低,限制了干細胞治療技術(shù)在臨床的廣泛推廣與應(yīng)用。 microRNA是一類短的內(nèi)源性非編碼RNA,通過與靶基因mRNA的3’非編碼區(qū)的結(jié)合位點結(jié)合,參與基因轉(zhuǎn)錄后調(diào)控。以往研究認為,microRNA調(diào)控基因表達并未起到開關(guān)的作用,而是發(fā)揮可變電阻器的作用。近年來研究發(fā)現(xiàn)microRNA的時空特異性分布規(guī)律使得microRNA在機體發(fā)育和細胞分化過程中發(fā)揮了重要的調(diào)控作用。利用特定的microRNA組合可以介導(dǎo)細胞從一種終末分化狀態(tài)轉(zhuǎn)化為另一種終末分化狀態(tài)。盡管已經(jīng)有文獻陸續(xù)報道了microRNA在肝臟發(fā)育過程的重要性,但其在干細胞肝向分化過程中的作用尚不清楚。 【目的】 本研究的目的是篩選成體干細胞肝向分化過程特異性的microRNA表達譜,并探討關(guān)鍵microRNA分子在肝向分化中的作用,為干細胞肝向分化機制的闡明提供理論支持。研究內(nèi)容主要包括三部分:①建立成體干細胞向肝細胞分化的體外模型;②篩選并鑒定成體干細胞肝向分化過程特異的microRNA表達譜;③闡明關(guān)鍵microRNA分子在肝向分化過程中的作用。 【方法】 1.通過免疫磁珠方法純化外周血造血干細胞,通過貼壁方法分選臍帶間充質(zhì)干細胞(mesenchymal stem cell, MSC)。應(yīng)用電子顯微鏡觀察細胞形態(tài)、流式細胞技術(shù)檢測細胞免疫表型,誘導(dǎo)成骨、成脂分化潛能方面檢測分離的干細胞純度及特性。在成功分離得到干細胞后,給予肝向分化誘導(dǎo)培養(yǎng)液,利用qRT-PCR方法和細胞免疫熒光方法分別從RNA、蛋白質(zhì)水平檢測MSC經(jīng)肝向誘導(dǎo)后肝細胞特異性基因的表達變化,利用PAS染色方法、尿素氮檢測試劑盒以及LDL攝取實驗檢測肝細胞特異性功能的水平,從而驗證是否成功建立干細胞肝向分化的體外模型。 2.選取干細胞肝向分化模型7個不同時間點的細胞,提取RNA,進行microRNA芯片檢測。依據(jù)差異倍數(shù)、表達量、以及變化規(guī)律篩選microRNA分子進行qRT-PCR檢測以驗證芯片結(jié)果。將qRT-PCR與芯片結(jié)果一致的差異表達的microRNA譜與其在成骨分化過程中的表達變化及其在肝癌細胞和正常肝細胞系的表達變化做比較,以明確該microRNA表達譜的肝向分化特異性。 3.分別構(gòu)建包含miR-1246、miR-1290、miR-148a、mR-30a、miR-424、miR-542-5p干擾序列的慢病毒顆粒,感染入MSC后,給予肝向分化誘導(dǎo)培養(yǎng)液,觀察分別抑制microRNA活性后對肝向分化過程的影響。另外分別合成以上microRNA的模擬物,并以肝臟富集的miR-122為對照,單一轉(zhuǎn)染或共同轉(zhuǎn)染后,利用qRT-PCR、細胞免疫熒光、PAS染色、尿素氮檢測以及LDL攝取實驗等方法檢測外源性增加microRNA表達后能否啟動MSC的肝向分化并將其轉(zhuǎn)化為成熟的有功能的肝細胞。最后將誘導(dǎo)的肝細胞移植入肝損傷小鼠體內(nèi),通過檢測小鼠肝功能的變化、肝組織形態(tài)學(xué)的變化以及人源性肝細胞和干細胞在肝臟的定植最終明確microRNA誘導(dǎo)的肝細胞能否在小鼠體內(nèi)發(fā)揮肝細胞的功能。 【結(jié)果】 1.成功建立了成體干細胞肝向分化體外細胞模型 從外周血分離CD34+細胞后經(jīng)流式細胞儀分析,,99%以上的細胞為CD34+細胞,細胞呈圓形不貼壁生長。經(jīng)四種不同培養(yǎng)體系培養(yǎng)與擴增后,發(fā)現(xiàn)CD34+細胞在SFM34+IL3+SCF+GM-SCF培養(yǎng)液中擴增效率最高,可以擴增6倍。但是,擴增后的細胞失去了CD34的免疫表型,即SFM34+IL3+SCF+GM-SCF培養(yǎng)液雖然可以高效的擴增CD34細胞,但是,擴增的CD34細胞失去了造血干細胞的特征。 從臍帶間質(zhì)分離的MSC具有典型的長索狀形態(tài),呈旋渦狀生長。流式細胞分析結(jié)果顯示,分離的細胞88.7%可以表達MSC標(biāo)志分子CD105,不表達內(nèi)皮細胞標(biāo)志分子CD31和造血干細胞標(biāo)志分子CD34。分離的細胞經(jīng)成骨誘導(dǎo)培養(yǎng)液誘導(dǎo)14天后,具有鈣鹽沉積。即我們成功地從臍帶間質(zhì)分離到MSC。 qRT-PCR結(jié)果顯示肝向誘導(dǎo)1周后,肝細胞特異性基因HNF4α、ALB和CK18的mRNA表達水平上調(diào),于26天時達到高峰。免疫細胞熒光染色結(jié)果顯示MSC經(jīng)肝向誘導(dǎo)14天后可以檢測到肝細胞特異性基因AFP、ALB、CK18的蛋白質(zhì)的表達。PAS染色結(jié)果顯示,MSC經(jīng)肝向誘導(dǎo)14天后可以檢測到紫紅色的糖原顆粒。LDL攝取實驗結(jié)果顯示,MSC經(jīng)肝向誘導(dǎo)14天時,大多數(shù)細胞可以攝取DIL標(biāo)記的LDL。尿素氮檢測結(jié)果顯示,MSC肝向誘導(dǎo)6天后其合成尿素的能力逐漸提高,于22天時達到高峰。即我們成功地建立了臍帶間質(zhì)來源MSC肝向分化的體外細胞模型。 2.肝向分化特異性microRNA表達譜的篩選與鑒定 本研究中共檢測了1205個人類已知的和144個人類病毒相關(guān)microRNA分子在肝向分化7個不同時間點的表達變化情況。共61個microRNA分子在肝向分化前后變化倍數(shù)大于2倍,且在7個時間點中呈規(guī)律性表達。在此基礎(chǔ)上,依據(jù)差異倍數(shù)和表達含量共篩選了7個差異倍數(shù)大于4倍的上調(diào)的microRNA、6個表達含量最高的上調(diào)的microRNA以及6個差異倍數(shù)大于4倍的下調(diào)的microRNA、10個表達含量最高的下調(diào)的microRNA進行了qRT-PCR驗證。qRT-PCR結(jié)果顯示,上調(diào)microRNA中miR-542-5p、miR-148a、miR-1290、miR-424、miR-30a和miR-1246的表達模式與芯片結(jié)果一致。下調(diào)microRNA中,除miR-3646外,其他下調(diào)microRNA均呈下調(diào)表達。但除miR-146a外,其他microRNA的表達模式與芯片結(jié)果吻合度較差。 qRT-PCR和芯片結(jié)果一致的6個上調(diào)的microRNA與8個下調(diào)的microRNA在成骨分化過程中的表達結(jié)果顯示,部分在肝向分化過程中上調(diào)的microRNA在成骨分化過程中卻呈下降趨勢,部分在肝向分化過程中下調(diào)的microRNA在成骨分化過程中卻呈上升趨勢。同樣經(jīng)肝向誘導(dǎo)后部分表達上調(diào)(下調(diào))的microRNA在L02和HepG2中的表達水平低于(高于)其在MSC中的表達。說明在肝向分化過程中差異表達的microRNA表達譜不同于其在成骨分化過程中的變化也并非肝癌細胞或肝細胞所特異性的,而是肝向分化過程所特異性的。 3.關(guān)鍵microRNA分子在MSC肝向分化中的作用 未感染病毒的MSC以及感染miR-nc-lev的MSC在肝向誘導(dǎo)6天后白蛋白的表達水平上調(diào),而感染了miR-1246-RNAi-lev、miR-1290-RNAi-lev、miR-148a-RNAi-lev、miR-30a-RNAi-lev、miR-424-RNAi-lev、miR-542-5p-RNAi-lev的MSC經(jīng)過肝向誘導(dǎo)后,其白蛋白的水平并未上調(diào)。肝向誘導(dǎo)12天后,miR-nc-lev組無論是否成功感染慢病毒均可以攝取LDL。而miR-1246-RNAi-lev、 miR-1290-RNAi-lev、miR-148a-RNAi-lev、miR-30a-RNAi-lev、miR-424-RNAi-lev、miR-542-5p-RNAi-lev組,只有在未成功感染慢病毒的細胞中出現(xiàn)了LDL的攝取。此外,這些慢病毒顆?梢砸种艸epG2細胞肝細胞特異性白蛋白和G6P的表達。 將miR-122、miR-1246、miR-1290、miR-148a、miR-30a、 miR-424和miR-542-5p模擬物分別轉(zhuǎn)染入MSC后,可以提高相應(yīng)microRNA的水平,但并不能促使MSC高表達白蛋白。7種microRNA模擬物共同轉(zhuǎn)染入MSC后,不僅可以同時增加上述7種microRNA的含量,而且可以促使MSC高表達肝臟特異性早、中、晚期標(biāo)志分子,不表達肝祖細胞、胰膽上皮標(biāo)志分子。使MSC的細胞形態(tài)從間質(zhì)樣向上皮樣轉(zhuǎn)化,并具有肝細胞特異性的功能。移植入肝損傷小鼠體內(nèi)后,不僅可以發(fā)揮肝細胞的功能即改善小鼠肝功能,還可以發(fā)揮部分MSC的功能,修復(fù)小鼠肝組織。 【結(jié)論】 我們成功掌握了分離純化外周血造血干細胞和臍帶MSC技術(shù);在成功建立MSC肝向分化體外細胞模型基礎(chǔ)上,通過芯片和qRT-PCR技術(shù)篩選并鑒定了一組MSC肝向分化過程所特異性的microRNA表達譜。在6個上調(diào)的microRNA中,抑制任意一個的活性均可以抑制MSC向肝細胞分化,而單純過表達某一種microRNA并不能啟動MSC向肝細胞分化。同時過表達時,可以促使MSC轉(zhuǎn)化為在體內(nèi)外均具有功能的肝細胞。本研究首次系統(tǒng)篩選了肝向分化特異性的microRNA譜并詳細探討了其在肝向分化中的作用。首次證實7-microRNA組合可以使MSC直接轉(zhuǎn)化為有功能的肝細胞。為肝向分化機制理解提供了一定的理論支持。
[Abstract]:[background]
The incidence of end-stage liver disease in China is increasing year by year. The annual mortality rate is 30-50%. in situ liver transplantation is the only effective means to treat end-stage liver disease. However, the lack of donor liver is the bottleneck of orthotopic liver transplantation. In addition, the orthotopic liver transplantation is expensive, the long-term use of immunosuppressive agents should be used after operation, and the perioperative risk is great. These problems greatly restrict the wide application of orthotopic liver transplantation.
Adult stem cells can break through the restriction of the germ layer and differentiate into functional hepatocytes in vivo and in vivo. Therefore, adult stem cell transplantation has become a new technique for the treatment of end-stage liver disease. However, the mechanism of its differentiation to hepatocytes is still unclear. The traditional induction method is complex, the induction cycle is long, the differentiation efficiency is low, and the dry fine is limited. Cell therapy is widely popularized and applied in clinical practice.
MicroRNA is a short endogenous non coding RNA, which is involved in post transcriptional regulation by binding to the binding site of the 3 'non coding region of the target gene mRNA. Previous studies suggest that microRNA regulation gene expression does not play the role of switching, but plays the role of variable resistors. In recent years, the spatial and temporal distribution of microRNA has been discovered. Rules make microRNA play an important role in the development of body and cell differentiation. The use of specific microRNA combinations can mediate cells from a terminal differentiation to another terminal differentiation state. Although the literature has reported the importance of microRNA in the development of the liver, it is in stem cells. The role of liver differentiation in the process of liver differentiation is not clear.
[Objective]
The purpose of this study is to screen the specific microRNA expression profiles of adult stem cell liver differentiation process, and to explore the role of key microRNA molecules in liver differentiation, and provide theoretical support for the clarifying mechanism of stem cell differentiation. The main contents of this study include three parts: (1) establishing an in vitro model for differentiation of adult stem cells into hepatocytes. (2) to screen and identify the specific microRNA expression profiles of adult stem cells in the process of liver differentiation; (3) clarify the role of key microRNA molecules in the process of liver differentiation.
[method]
1. the peripheral blood stem cells (mesenchymal stem cell, MSC) were purified by the immunomagnetic bead method. The cell morphology was observed by the electron microscope, the cell immunophenotype was detected by flow cytometry, and the purity and characteristics of the separated stem cells were detected by the induction of osteogenesis and the potential of adipogenic differentiation. After the stem cells were successfully isolated, the hepatocyte differentiation induction culture was given. The expression of specific genes in the hepatocyte was detected by qRT-PCR and cell immunofluorescence methods from the RNA and protein levels, respectively. The specificity of the liver cell specific gene was detected by the PAS staining method, the urea nitrogen detection kit and the LDL uptake test for the detection of the liver cell specificity of MSC. The level of function, thereby verifying whether successful establishment of stem cell hepatocyte differentiation model in vitro.
2. the cells of 7 different time points of stem cell liver differentiation model were selected, RNA was extracted and microRNA chip was detected. According to the difference multiplier, the expression and the change rule, the microRNA molecules were screened by qRT-PCR to verify the results of the chip. The microRNA spectrum of differential expression of qRT-PCR and the result of the chip was consistent with the process of osteogenesis differentiation. The expression changes and their expression changes in hepatoma cells and normal hepatocyte lines were compared to clarify the liver differentiation specificity of the microRNA expression profile.
3. the lentivirus particles including miR-1246, miR-1290, miR-148a, mR-30a, miR-424, miR-542-5p interference sequences were constructed respectively. After infection into MSC, the liver differentiation induction culture was given, and the effects of inhibiting the activity of microRNA on the liver differentiation process were observed respectively. After single transfection or co transfection, qRT-PCR, cell immunofluorescence, PAS staining, urea nitrogen detection and LDL uptake test were used to detect the liver differentiation of MSC and convert it into mature and functional liver cells after exogenous microRNA expression, and then the induced hepatocytes were transplanted into the liver injury mice. By detecting the changes in the liver function of mice, the changes of liver histomorphology and the colonization of human hepatocytes and stem cells in the liver, the liver cells of microRNA induced liver cells can be played in mice.
[results]
1. successfully established adult stem cell hepatocyte differentiation model in vitro.
After the separation of CD34+ cells from peripheral blood, more than 99% of the cells were CD34+ cells, and the cells were round and non wall growth. After four different cultures and amplification, it was found that the amplification efficiency of CD34+ cells in the SFM34+IL3+SCF+GM-SCF culture solution was the highest, which could be expanded by 6 times. But the expanded cells lost the CD34 immunity. Although the SFM34+IL3+SCF+GM-SCF culture medium can amplify CD34 cells efficiently, the expanded CD34 cells lose the characteristics of hematopoietic stem cells.
The MSC separated from the umbilical cord was a typical long cable shaped form and was vortexed. Flow cytometry showed that the isolated cell 88.7% could express the MSC marker molecule CD105, and the cells that did not express the endothelial cell marker molecule CD31 and the hematopoietic stem cell marker CD34. were induced for 14 days after the induction of the osteogenic induction culture, with calcium salts. Deposition. That is, we succeeded in separating MSC. from umbilical cord stroma.
QRT-PCR results showed that after 1 weeks of liver induction, the mRNA expression level of hepatocyte specific gene HNF4 a, ALB and CK18 increased and reached the peak at 26 days. The results of immunofluorescence staining showed that the hepatocyte specific gene AFP, ALB, CK18 protein expression of MSC showed that MSC via the liver to the liver after 14 days of liver induction. 14 days after induction, the.LDL uptake test of purple red glycogen granules showed that when MSC was induced 14 days after liver induction, most cells could take the LDL. urea nitrogen test of DIL markers. The ability of MSC liver to synthesize urea gradually increased after 6 days of induction, and reached the peak at 22 days. That is, we successfully established the umbilical cord between the umbilical cord. A cell model of MSC liver differentiation in vitro.
Screening and identification of 2. liver specific microRNA expression profiles
In this study, 1205 human and 144 human virus related microRNA molecules were detected at 7 different time points of liver differentiation. A total of 61 microRNA molecules were more than 2 times more than 2 times before and after the liver differentiation, and were regularly expressed in 7 time points. On this basis, the difference multiplier and expression content were based on this. A total of 7 up-regulated microRNA, 6 up-regulated microRNA with the highest expression level, and 6 down-regulation of 4 times more than 4 times, were screened. The 10 down-regulated microRNA with the highest expression content showed that.QRT-PCR results showed that microRNA was up to miR-542-5p, miR-148a, miR-1290, miR-424, miR-3. The expression patterns of 0A and miR-1246 are in accordance with the results of the chip. In the down regulation of microRNA, all the other down-regulated microRNA is down down expression, except for miR-3646, but the expression pattern of other microRNA is not consistent with the chip results except miR-146a.
The expression of 6 up-regulated microRNA and 8 downregulated microRNA in the process of osteogenic differentiation showed that the up regulation of microRNA in the process of liver differentiation showed a downward trend in the process of osteogenesis, and the microRNA in the process of liver differentiation was rising in the process of osteogenesis differentiation. The expression level of microRNA in L02 and HepG2 is lower than (higher) in MSC. It shows that the differential expression of microRNA expressed in the process of hepatic differentiation is different from that in the process of osteogenesis, and not in the liver cells or liver cells, but the liver cells, but the liver. Specific to the process of differentiation.
3. the role of key microRNA molecules in MSC liver differentiation
The MSC of uninfected virus and MSC infected with miR-nc-lev increased in the expression level of albumin for 6 days after liver induction, while miR-1246-RNAi-lev, miR-1290-RNAi-lev, miR-148a-RNAi-lev, miR-30a-RNAi-lev, miR-424-RNAi-lev, miR-542-5p-RNAi-lev MSC were induced by liver direction, and the level of albumin was not up. The liver was induced to 12. Day after, group miR-nc-lev, whether or not successfully infected with lentiviruses, can take LDL. and miR-1246-RNAi-lev, miR-1290-RNAi-lev, miR-148a-RNAi-lev, miR-30a-RNAi-lev, miR-424-RNAi-lev, miR-542-5p-RNAi-lev, and LDL uptake only in cells that have not successfully infected the lentivirus. In addition, these lentivirus particles can inhibit HepG2. The expression of specific albumin and G6P in cell hepatocytes.
MiR-122, miR-1246, miR-1290, miR-148a, miR-30a, miR-424 and miR-542-5p can be transfected into MSC respectively, which can improve the level of the corresponding microRNA, but it can not promote the co transfection of MSC high expression albumin.7 microRNA analogue, which can not only increase the content of these 7 kinds, but also promote high expression. The liver specific early, middle and late marker molecules, which do not express liver progenitor cells and pancreatic bile duct epithelial markers, make the cell morphology of MSC transform from interstitial like to epithelioid and have the function of hepatocyte specific. After transplanted into the liver injury mice, it can not only improve the function of liver cells, but also improve the liver function of mice, and can also play a part of MSC. The function of repairing the liver tissue of mice.
[Conclusion]
We successfully obtained the isolation and purification of peripheral blood hematopoietic stem cells and umbilical cord MSC. On the basis of the successful establishment of MSC hepatocyte differentiation in vitro cell model, the microRNA expression profiles of a group of MSC liver differentiation processes were screened and identified by chip and qRT-PCR technology. In the 6 above adjusted microRNA, the inhibitory activity of any one was inhibited. It can inhibit the differentiation of MSC into hepatocytes, and simply overexpression of a certain kind of microRNA can not initiate MSC to differentiate into liver cells. At the same time, overexpression can induce the transformation of MSC into functional liver cells both in vivo and in vivo. This study first systematically screened the specific microRNA spectrum of liver differentiation and discussed in detail its liver differentiation. For the first time, it is confirmed that 7-microRNA combination can directly transform MSC into functional hepatocytes, providing some theoretical support for understanding the mechanism of liver differentiation.
【學(xué)位授予單位】:第四軍醫(yī)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2013
【分類號】:R575.3
【共引文獻】
相關(guān)期刊論文 前10條
1 常勝合;徐立;李敬陽;孫威;王甲水;許桂鶯;孫佩光;吳瓊;金志強;舒海燕;;提高香蕉胚性愈傷誘導(dǎo)成功率的可能途徑[J];安徽農(nóng)業(yè)科學(xué);2013年19期
2 周新人;王方;;干細胞治療肝硬化進展[J];大連醫(yī)科大學(xué)學(xué)報;2013年05期
3 范公忍;李樹玲;;骨髓干細胞移植治療肝硬化的研究進展[J];國際消化病雜志;2013年04期
4 姜英浩;張菊;盧茲凡;;干細胞倫理之爭的“終結(jié)者”——談諾貝爾生理學(xué)與醫(yī)學(xué)獎獲得者山中伸彌[J];醫(yī)學(xué)爭鳴;2013年05期
5 Jian Shu;Hongkui Deng;;Lineage Specifers:New Players in the Induction of Pluripotency[J];Genomics,Proteomics & Bioinformatics;2013年05期
6 Xiao-Bing Zhang;;Cellular Reprogramming of Human Peripheral Blood Cells[J];Genomics,Proteomics & Bioinformatics;2013年05期
7 Wenwen Jia;Wen Chen;Jiuhong Kang;;The Functions of MicroRNAs and Long Non-coding RNAs in Embryonic and Induced Pluripotent Stem Cells[J];Genomics,Proteomics & Bioinformatics;2013年05期
8 Yi-ye Zhou;Fanyi Zeng;;Integration-free Methods for Generating Induced Pluripotent Stem Cells[J];Genomics,Proteomics & Bioinformatics;2013年05期
9 Menghua Wu;Guilai Chen;Baoyang Hu;;Induced Pluripotency for Translational Research[J];Genomics,Proteomics & Bioinformatics;2013年05期
10 Xiao Lu;Tongbiao Zhao;;Clinical Therapy Using iPSCs:Hopes and Challenges[J];Genomics,Proteomics & Bioinformatics;2013年05期
相關(guān)博士學(xué)位論文 前10條
1 賈蓓;A型血友病人非整合誘導(dǎo)多能干細胞建系及其細胞疾病模型的建立[D];南方醫(yī)科大學(xué);2012年
2 申晶;骨髓源間充質(zhì)干細胞輸注促進STZ誘導(dǎo)的糖尿病大鼠胰腺內(nèi)α細胞向β細胞的轉(zhuǎn)變:糖尿病治療的新模式[D];中國人民解放軍軍醫(yī)進修學(xué)院;2013年
3 茍麗娟;人骨髓間充質(zhì)干細胞誘導(dǎo)分化為軟骨細胞過程中microRNA作用機制研究[D];北京協(xié)和醫(yī)學(xué)院;2013年
4 王振華;新生小鼠心肌再生機制的研究[D];北京協(xié)和醫(yī)學(xué)院;2013年
5 戴楠;雙功能基因APE1與miRNAs相互調(diào)控介導(dǎo)骨肉瘤放療敏感性的機制研究[D];第三軍醫(yī)大學(xué);2013年
6 李廷軍;自體骨髓間充質(zhì)干細胞移植促進肝硬化肝臟門靜脈栓塞剩余肝臟再生的研究[D];第三軍醫(yī)大學(xué);2013年
7 劉佳;小鼠肝細胞AMPK相關(guān)microRNAs的篩選及功能研究[D];天津醫(yī)科大學(xué);2013年
8 曹小慶;出生后心肌細胞的增殖及其調(diào)控相關(guān)microRNAs的實驗研究[D];北京協(xié)和醫(yī)學(xué)院;2013年
9 祝亮方;基于體外重編程技術(shù)誘導(dǎo)生成急性髓系白血病源性多能干細胞(iPSC)的實驗研究[D];福建醫(yī)科大學(xué);2012年
10 顧斌;胚胎干細胞特征性標(biāo)志物Aire的發(fā)現(xiàn)和功能研究[D];浙江大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 韓小偉;骨髓間充質(zhì)干細胞移植治療兔椎間盤退行性變的實驗研究[D];川北醫(yī)學(xué)院;2013年
2 侯歌;胃癌組織中PCNA、Ki-67、Nanog、Oct-4的表達與復(fù)發(fā)轉(zhuǎn)移的關(guān)系[D];鄭州大學(xué);2013年
3 張艷玲;E-cadherin、β-catenin及Oct-4、Sox-2表達與胃癌術(shù)后復(fù)發(fā)轉(zhuǎn)移的關(guān)系[D];鄭州大學(xué);2013年
4 解智慧;干細胞轉(zhuǎn)錄調(diào)控因子SOX2在食管鱗癌中的表達與臨床預(yù)后的關(guān)系[D];鄭州大學(xué);2013年
5 趙曉燕;HBV隱匿性感染及其光化學(xué)滅活機制的研究[D];華東師范大學(xué);2013年
6 李曉利;基于氧化石墨烯的microRNA熒光傳感器研究[D];河北大學(xué);2013年
7 石俊杰;鹽霉素對人肺腺癌A549細胞株生物學(xué)特性的影響[D];大連醫(yī)科大學(xué);2012年
8 楊大偉;經(jīng)肝動脈和門靜脈2種不同途徑移植骨髓間充質(zhì)干細胞對重癥肝硬化大鼠模型療效的對比[D];大連醫(yī)科大學(xué);2012年
9 蘭亞;間充質(zhì)干細胞通過誘導(dǎo)2型kupffercell激活對CCL4誘導(dǎo)的小鼠肝硬化影響的實驗研究[D];延安大學(xué);2013年
10 劉坤;小鼠部分重編程細胞系的建立及其可塑性研究[D];內(nèi)蒙古大學(xué);2013年
本文編號:1830257
本文鏈接:http://www.sikaile.net/yixuelunwen/jjyx/1830257.html