基于生物信息學(xué)技術(shù)篩選慢性乙型肝炎血液相關(guān)基因的研究
[Abstract]:Chronic hepatitis B (CHB) is a worldwide disease caused by hepatitis B virus (HBV), originally known as serum hepatitis. It has a high incidence in Asia, Africa and other developing countries, and is endemic in China. About one third of the world's people have been infected with CHB once in their lifetime, including asymptomatic hepatitis B virus carriers (HBsAg carriers). At present, 30 million hepatitis B patients in China are characterized by mild onset, which is more common in subclinical and chronic types. Persistent positive HBsAg patients without jaundice tend to be chronically transmitted mainly through blood, mother-to-child and sexual contact. Hepatitis liver fibrosis cirrhosis liver cancer is an evolutionary pathway of liver disease, which poses a considerable threat to the survival of patients. Chronic hepatitis caused by hepatitis B accounts for about 80% to 90% of the chronic hepatitis caused by various causes. Chronic hepatitis can last for several years, even decades. The disease is usually mild and does not develop. Any symptoms or obvious liver damage, but in some cases, persistent inflammation will slowly damage the liver, leading to cirrhosis and liver cancer, and liver cancer patients with poor prognosis, less treatment. At present, the use of hepatitis B vaccine prevention and control of hepatitis B is the main measure, although full vaccination of hepatitis B vaccine can make a large incidence of hepatitis B. However, due to the large base of hepatitis B patients in China, new hepatitis B patients are still emerging, and the economic and social development is not as good as our country, hepatitis B is still spreading. Therefore, to find effective treatment of hepatitis B is an urgent problem for medical staff and researchers.
As an important technology platform in the field of life science in the 21st century, gene chip is an effective method for screening differentially expressed genes with the advantages of high throughput and rapid measurement. Column fragments, which qualitatively and quantitatively analyze the composition of their mRNA population to describe the type and abundance of gene expression in a particular cell or tissue in a particular state, are called gene expression profiles. Gene expression profiles have been widely used in tumor genesis, early diagnosis, tumor genotyping, guiding treatment and evaluating prognosis. With the development of gene expression profiles, abundant, massive and complex genes have been produced. How to interpret the hybridization information of thousands of gene spots on the chip and reveal the life characteristics and laws contained therein has become the main "bottleneck" that restricts the application and development of gene chip technology.
Bioinformatics is a new frontier subject, originally known as genomic informatics, which is formed by the mutual penetration and highly intersection of modern biology and Medical Sciences (such as biochemistry, cell biology, developmental biology, genetics, genomics, physiology) and information science, computer science, biostatistics, mathematics and so on. Biochip research is based on the acquisition, processing, storage, management, retrieval, distribution, analysis and interpretation of biological experimental information by means of a combination of mathematical, computer science and biological tools to achieve understanding of the biological implications contained in the data. Therefore, in a narrow sense, bioinformatics is an interdisciplinary subject that applies computer science and mathematics to the acquisition, processing, storage, classification, retrieval and analysis of biomolecular information in order to understand the biological significance of these biomolecular information.
The main research contents of bioinformatics include the collection and management of biomolecular data, database search and sequence comparison, genome sequence information analysis, gene expression data analysis and processing, protein structure prediction, phylogenetic analysis, comparative genomics and so on. Several aspects: (1) acquisition, storage, management, processing, distribution and interpretation of genome-related information; (2) discovery and localization of new genes, functional annotations, regulatory mechanisms and network relationships; (3) analysis of information structure in non-coding regions; (4) study of biological evolution; (6) comparative study of complete genomes; (3) study on methods of genome information analysis _Functional genome related information analysis, including large-scale gene expression profile analysis related algorithms, software research, gene expression regulation network research, etc. Protein molecular spatial structure prediction, simulation and molecular design. _Drug design and application development research.
Bioinformatics is one of the Important Frontiers of life science and natural science, and also one of the core fields of Natural Science in the 21st century. Its research focuses mainly on genomics and proteomics. Functional genomics research that can be linked. Second, the shift from mapping-based gene isolation to sequence-based gene isolation. Third, the shift from the study of the causes of disease to the exploration of pathogenesis. Fourth, the shift from disease diagnosis to disease susceptibility research. Among them, functional genomics with the mapping and sequencing of the human genome project In cancer research, the common analytical methods include sequence alignment, statistical analysis, visual mapping, biological clustering, pathway analysis and promoter prediction. Data mining at the molecular level is used to illustrate the disease and to open up the study of molecular pathogenesis of cancer. Proteomics research focuses on the following aspects: (1) protein three-dimensional structure prediction. (2) prediction of protein interactions based on genomic context, such as gene neighbors, phylogenetic profiles, and bases. Rosetta stone method. (3) Bioinformatics is used to simulate and predict the structure of protein molecules, so as to provide a basis for drug molecular design.
The research contents are divided into three parts.
Part 1: Chronic hepatitis B gene expression profiling chip. Three blood samples from patients with chronic hepatitis B and three healthy volunteers were collected. Total RNA of leukocytes from patients and volunteers with chronic hepatitis B was extracted by one-step method using human Genome U133Plus2.0Array gene expression profiling chip of Affymetrix Company in the United States. After hybridization and strict preparation, the differentially expressed genes in patients with chronic hepatitis B and normal persons were analyzed by fluorescence scanner. The scanner results showed that 37542 genes were detected after careful analysis. The results are accurate and effective, and can be used for further analysis and utilization.
Part two: Screening of genes related to the pathogenesis of chronic hepatitis B. In this study, the microarray data of chronic hepatitis B gene expression profiles obtained in the first part were mined by using the microarray data analysis software BRB-Array Tools 4.2.1, and bioinformatics analysis was carried out to explore the way of screening tumor-related genes based on gene expression profiles. The microarray data were imported into BRB-Array Tools 4.2.1 for data screening, then differentially expressed genes were identified by hierarchical clustering, grouping analysis, GO analysis and KEGG pathway analysis. Interleukin signaling pathway, inflammatory chemokine and cytokine mediated signaling pathway, apoptosis signaling pathway and FAS signaling pathway.
Part 3: Protein-protein interaction network analysis of genes associated with chronic hepatitis B. For microarray data, obtaining differentially expressed genes is only the first step, but the transcriptional regulation of these differentially expressed genes and the interactions between the expressed proteins can not be analyzed from the gene expression profiles, and more importantly, how to do these In this chapter, we used GATHER, STRING, Cytoscape and other methods to analyze the biology of differentially expressed genes and their interaction network map. The results showed that the up-regulated genes were mainly enriched in cell adhesion, Wnt signaling pathway and endocrine system. The down-regulated genes are mostly enriched in the immune response, defense reflex, response to various stimuli in vivo and in vitro. To further understand the interaction network between different genes, the STRING online tool was used to identify the proteins encoded by 51 different genes related to chronic hepatitis B. Interactions between the proteins encoded by these genes were analyzed and found to be mainly concentrated in 11 proteins. Further analysis of the protein-protein interaction network constructed by Cytoscape revealed that six of the up-regulated genes encoded proteins were closely related to these genes: FLNC, MDK, TK1, THBS1, MAP. K12 and CD93., MDK, TKl and other genes are consistent with the results of STRING analysis, proving their importance again.
To sum up, on the basis of microarray experiment, this study used bioinformatics method to analyze the gene chip data of chronic hepatitis B. Using gene expression profiling data analysis tools, bioinformatics tools and literature mining tools, we carried out in-depth bioinformatics analysis of differentially related genes of chronic hepatitis B. Eleven abnormally expressed nodal genes and six proteins closely related to differentially expressed genes were successfully screened. These genes may play an important role in the pathogenesis of chronic hepatitis B. Further analysis of the extent and function of these genes will be the next step. In the aspect of biological pathways, several biological pathways are also found, which may be interrelated and interacted with each other, forming a complex organic signal network, and play a role in the pathogenesis of chronic hepatitis B. These results provide a further understanding of chronic hepatitis B. It provides meaningful exploration and evidence for molecular pathogenesis, drug development and treatment.
【學(xué)位授予單位】:南方醫(yī)科大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:R512.62
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔣與剛;劉靜;;營養(yǎng)基因組學(xué)的研究進(jìn)展[J];生理科學(xué)進(jìn)展;2006年01期
2 孫淳;劉銀坤;;多因素癌癥診斷分類模型的建立和應(yīng)用[J];生命的化學(xué);2010年03期
3 韋安陽;羅新貴;楊勇;何書華;張濤;劉洋;;糖尿病性勃起功能障礙大鼠的基因表達(dá)譜芯片數(shù)據(jù)分析[J];南方醫(yī)科大學(xué)學(xué)報;2011年04期
4 王斌會;生命科學(xué)中的信息學(xué)——生物信息學(xué)[J];醫(yī)學(xué)信息;2000年10期
5 李伍舉,應(yīng)曉敏;BioSun:計算機輔助分子生物學(xué)實驗設(shè)計的軟件系統(tǒng)[J];軍事醫(yī)學(xué)科學(xué)院院刊;2004年05期
6 石鷗燕;楊文萬;;基于Entrez系統(tǒng)利用生物信息數(shù)據(jù)庫[J];醫(yī)學(xué)信息;2007年02期
7 唐雪芳;賀修勝;;生物信息學(xué)策略鑒定新基因[J];現(xiàn)代生物醫(yī)學(xué)進(jìn)展;2008年07期
8 譚小丹;蘇永春;李彬;;生物信息學(xué)課程教學(xué)探討[J];山西醫(yī)科大學(xué)學(xué)報(基礎(chǔ)醫(yī)學(xué)教育版);2008年01期
9 曹軍;姚曉峰;仲來福;;生物信息學(xué)在預(yù)防醫(yī)學(xué)教學(xué)中的地位和作用[J];山西醫(yī)科大學(xué)學(xué)報(基礎(chǔ)醫(yī)學(xué)教育版);2008年02期
10 顧敏;曹永忠;劉秀梵;;生物信息學(xué)在A型流感病毒研究中的應(yīng)用[J];病毒學(xué)報;2011年03期
相關(guān)會議論文 前10條
1 李媛;崔尚金;李建偉;于康震;;分子生態(tài)學(xué)與生物信息學(xué)[A];中國畜牧獸醫(yī)學(xué)會禽病學(xué)分會第十一次學(xué)術(shù)研討會論文集[C];2002年
2 陸文聰;鈕冰;;基于數(shù)據(jù)挖掘的生物信息學(xué)研究進(jìn)展[A];中國化學(xué)會第27屆學(xué)術(shù)年會第15分會場摘要集[C];2010年
3 陳婷婷;郭婷婷;李林;安冬;;基于生物信息學(xué)的功能蛋白基因序列分類研究[A];2011年全國通信安全學(xué)術(shù)會議論文集[C];2011年
4 唐翠蘭;陳智;;α防御素在慢性乙型肝炎和無癥狀HBV攜帶者之間的差異表達(dá)[A];傳染病診治高峰論壇暨2007年浙江省感染病學(xué)、肝病學(xué)學(xué)術(shù)年會論文匯編[C];2007年
5 盧學(xué)春;楊波;朱宏麗;姚善謙;;采用生物信息學(xué)方法優(yōu)化依硫磷酸聯(lián)合方案治療MDS的應(yīng)用研究[A];中國科協(xié)海峽兩岸學(xué)術(shù)研討會——2008血液腫瘤論壇會議會編[C];2008年
6 阮林;何穎;鄒澤紅;傅意玲;陳惠芳;陶愛林;;外源蛋白過敏原性生物信息學(xué)評價[A];中華醫(yī)學(xué)會2010年全國變態(tài)反應(yīng)學(xué)術(shù)會議暨中歐變態(tài)反應(yīng)高峰論壇參會指南/論文匯編[C];2010年
7 馮文龍;趙清杰;;基于遺傳算法的DNA多序列比對問題[A];2007年中國智能自動化會議論文集[C];2007年
8 康曉東;;生物信息學(xué)及其研究對象[A];2003年全國醫(yī)學(xué)影像技術(shù)學(xué)術(shù)會議論文匯編[C];2003年
9 王智宇;童強松;曾甫清;劉媛;顧朝輝;鄭麗端;蔡嘉斌;蔣國松;;小鼠睪丸特異性基因TSEG-4的克隆及表達(dá)分析[A];第十五屆全國泌尿外科學(xué)術(shù)會議論文集[C];2008年
10 朱云平;劉湘軍;魏麗萍;李亦學(xué);;肝臟蛋白質(zhì)組的生物信息學(xué)研究[A];中國蛋白質(zhì)組學(xué)第三屆學(xué)術(shù)大會論文摘要[C];2005年
相關(guān)重要報紙文章 前10條
1 本報記者 李恩青;生物信息學(xué):促動BT與IT雙贏[N];中國高新技術(shù)產(chǎn)業(yè)導(dǎo)報;2001年
2 劉義;生物信息學(xué)產(chǎn)業(yè)浮出水面[N];中國高新技術(shù)產(chǎn)業(yè)導(dǎo)報;2000年
3 英潮;生物信息學(xué)演繹“變臉”[N];中藥報;2002年
4 中科院院士 強伯勤;生物信息學(xué)蘊有巨大效益[N];光明日報;2002年
5 白毅;加強生物信息學(xué)建設(shè)推動人類基因組研究[N];中國醫(yī)藥報;2002年
6 周穎;李梢:生物信息學(xué)為證候研究提供新視角[N];中國中醫(yī)藥報;2006年
7 中國科學(xué)院院士 張春霆 郝柏林;生物信息學(xué)孕育大產(chǎn)業(yè)[N];經(jīng)濟(jì)日報;2000年
8 劉麗麗;高性能計算為生物信息學(xué)加速[N];計算機世界;2007年
9 嚴(yán)飛;生物信息學(xué) 新世紀(jì)的新科學(xué)[N];大眾科技報;2002年
10 張亞東;“交點”上的舞蹈[N];計算機世界;2002年
相關(guān)博士學(xué)位論文 前10條
1 張敏;生物信息學(xué)中多序列比對等算法的研究[D];大連理工大學(xué);2005年
2 曾智勇;豬呼腸孤病毒SC-A株的分離鑒定及全基因組cDNA文庫的構(gòu)建和分子遺傳特征分析[D];四川農(nóng)業(yè)大學(xué);2006年
3 肖慶;硬粒小麥硒蛋白的生物信息學(xué)研究[D];華中科技大學(xué);2008年
4 劉太崗;機器學(xué)習(xí)方法在生物信息學(xué)中的應(yīng)用[D];大連理工大學(xué);2010年
5 張革新;α-淀粉酶性能與結(jié)構(gòu)關(guān)系的生物信息學(xué)研究[D];江南大學(xué);2005年
6 李艷蕓;HLA-DRB1基因編碼區(qū)SNPs的分析及其與宮頸癌的相關(guān)性研究[D];天津醫(yī)科大學(xué);2006年
7 童慶;面向基因預(yù)測的信息處理方法研究[D];中國科學(xué)技術(shù)大學(xué);2006年
8 劉立芳;生物信息學(xué)中的多序列比對與模體識別問題研究[D];西安電子科技大學(xué);2006年
9 郭雨珍;蛋白質(zhì)結(jié)構(gòu)預(yù)測和比較的優(yōu)化研究[D];大連理工大學(xué);2007年
10 熊峗;生物序列模式挖掘與聚類研究[D];復(fù)旦大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 胡f;基于生物信息學(xué)技術(shù)篩選慢性乙型肝炎血液相關(guān)基因的研究[D];南方醫(yī)科大學(xué);2013年
2 潘菁;中國西南地區(qū)人群中IL-10-592和IFNAR1-17470多態(tài)性與慢性乙型肝炎易感性的相關(guān)性分析[D];重慶醫(yī)科大學(xué);2011年
3 崔明芳;Tim-3基因多態(tài)性與HBV感染轉(zhuǎn)歸的相關(guān)性研究[D];安徽醫(yī)科大學(xué);2011年
4 夏淑林;CD24基因多態(tài)性與慢性HBV感染的遺傳易感性研究[D];安徽醫(yī)科大學(xué);2011年
5 辛?xí)喳?慢性乙型肝炎肝組織學(xué)變化及其與血清生化和纖維化等指標(biāo)的關(guān)系[D];大連醫(yī)科大學(xué);2010年
6 李薇;乙肝凈方治療應(yīng)用核苷(酸)類藥物停藥復(fù)發(fā)的慢性乙型肝炎臨床觀察[D];湖北中醫(yī)藥大學(xué);2010年
7 李文聰;慢性乙型肝炎優(yōu)化治療方案的臨床研究[D];河北醫(yī)科大學(xué);2011年
8 劉琦;HBV基因型及前C區(qū)變異與慢性乙型肝炎病情關(guān)系研究[D];重慶醫(yī)科大學(xué);2011年
9 厲晶萍;慢性乙型肝炎肝腎陰虛型的理法方藥研究[D];湖北中醫(yī)學(xué)院;2004年
10 姚紅梅;PI3K/PKB信號通路在慢性乙型肝炎患者外周血單個核細(xì)胞凋亡中的作用[D];河北醫(yī)科大學(xué);2011年
,本文編號:2192464
本文鏈接:http://www.sikaile.net/yixuelunwen/chuanranbingxuelunwen/2192464.html