胰島素經(jīng)PI3K-GSK3β信號(hào)通路調(diào)節(jié)內(nèi)皮細(xì)胞內(nèi)皮素-1基因表達(dá)
本文選題:糖原合酶激酶-3β + GSK3β ; 參考:《浙江大學(xué)》2007年博士論文
【摘要】: 內(nèi)皮素-1(endothelin-1,ET-1)作為強(qiáng)效的血管收縮因子和有絲分裂原,在高血壓、冠心病、心肌肥大等疾病的發(fā)病中起重要作用。內(nèi)皮細(xì)胞ET-1表達(dá)調(diào)節(jié)主要發(fā)生于轉(zhuǎn)錄水平。大量文獻(xiàn)報(bào)道胰島素能刺激內(nèi)皮細(xì)胞ET-1表達(dá);而胰島素抵抗時(shí)的高胰島素血癥可激活機(jī)體內(nèi)皮素系統(tǒng),引起的ET-1表達(dá)升高,進(jìn)而導(dǎo)致心血管細(xì)胞的增生或肥大以及血管舒縮異常。 胰島素激活PI3激酶(P13K)和絲裂原活化蛋白激酶(MAPK)兩條主要信號(hào)通路,現(xiàn)已知PI3K/Akt通路介導(dǎo)胰島素刺激內(nèi)皮細(xì)胞一氧化氮(NO)產(chǎn)生;但不清楚PI3K/Akt通路是否參與胰島素刺激內(nèi)皮細(xì)胞ET-1基因表達(dá)。胰島素激活PI3K/Akt,進(jìn)而磷酸化9位絲氨酸殘基(Ser~9)導(dǎo)致糖原合酶激酶-3β(GSKβ)滅活。GSK3β是一種多功能的絲氨酸/蘇氨酸激酶,可磷酸化多種轉(zhuǎn)錄因子并調(diào)節(jié)其活性,例如:改變轉(zhuǎn)錄因子與DNA的結(jié)合能力。作為胰島素信號(hào)下游的重要激酶,GSK3β是否參與調(diào)節(jié)內(nèi)皮細(xì)胞ET-1基因表達(dá),尚未見(jiàn)文獻(xiàn)報(bào)道。 人ET-1基因啟動(dòng)子含TATA框,其活性受多種轉(zhuǎn)錄因子調(diào)節(jié),如:AP-1、含鋅指結(jié)構(gòu)轉(zhuǎn)錄因子GATA-2、缺氧誘導(dǎo)因子-1(HIF-1);但這些轉(zhuǎn)錄因子的表達(dá)并不局限于血管內(nèi)皮細(xì)胞;因而,這些因子單獨(dú)作用不大可能引起胰島素誘導(dǎo)的內(nèi)皮細(xì)胞特異性基因ET-1表達(dá)。血管內(nèi)皮鋅指-1(Vezf1)與ET-1核心啟動(dòng)子結(jié)合,是調(diào)節(jié)細(xì)胞特異性基因ET-1在內(nèi)皮細(xì)胞表達(dá)的潛在靶點(diǎn)。目前尚不清楚Vezf1是否參與胰島素對(duì)內(nèi)皮細(xì)胞ET-1表達(dá)的調(diào)節(jié)。 本課題研究:(1)胰島素對(duì)GSK3β滅活作用是否引起內(nèi)皮細(xì)胞ET-1基因表達(dá)增加;(2)胰島素上調(diào)ET-1啟動(dòng)子活性是否由PI3K介導(dǎo);(3)Vezf1是否參與胰島素信號(hào)對(duì)內(nèi)皮細(xì)胞ET-1基因表達(dá)調(diào)節(jié)。研究目的在于闡明胰島素調(diào)節(jié)內(nèi)皮細(xì)胞ET-1表達(dá)的分子機(jī)制。 材料和方法 1.細(xì)胞培養(yǎng) 人肺動(dòng)脈內(nèi)皮細(xì)胞(PAEC)生長(zhǎng)于含2%胎牛血清(FBS)的EBM-2培養(yǎng)液中。人臍靜脈內(nèi)皮細(xì)胞(HUVEC),用含4%FBS的RPMI 1640培養(yǎng)液培養(yǎng)。 2.胰島素和氯化鋰(LiCl)處理 單層培養(yǎng)的人肺動(dòng)脈內(nèi)皮細(xì)胞(PAEC)血清饑餓6h后,加入含0-100nM重組豬胰島素或20mM LiCl(GSK3β抑制劑)條件培養(yǎng)液,37℃孵育1h。用酶聯(lián)免疫吸附法(ELISA)檢測(cè)培養(yǎng)上清液ET-1多肽含量或用Real time定量RT-PCR(qRT-PCR)分析細(xì)胞ET-1 mRNA水平。部分細(xì)胞經(jīng)胰島素或LiCl處理后,用4%甲醛固定,ELISA法檢測(cè)細(xì)胞的Ser~9磷酸化GSK3β和總GSK3β蛋白水平(GSK3p活性)。 3.GSK3βsiRNA和Vezf1 siRNA轉(zhuǎn)染內(nèi)皮細(xì)胞 單層PAEC分別轉(zhuǎn)染GSK3βNezf1 siRNA和control siRNA(不針對(duì)某種特殊序列)。37℃孵育72h后。用ELISA法測(cè)定培養(yǎng)上清液ET-1含量;采用qRT-PCR分析細(xì)胞ET-1和GSK3βNezf1基因表達(dá);siRNA對(duì)目標(biāo)蛋白的抑制作用經(jīng)Western blot分析證實(shí)。 4.重組腺病毒Ad5-GSK3β感染內(nèi)皮細(xì)胞 人PAEC分別感染染重組共表達(dá)GSK3β基因和GFP基因的腺病毒表達(dá)載體(Ad5-GSK3β)和僅表達(dá)GFP基因的空白腺病毒(Ad5-GFP);細(xì)胞感染后在含或不含18nM胰島素條件培養(yǎng)液中孵育1h。ELISA法檢測(cè)培養(yǎng)上清液ET-1含量;qRT-PCR分析細(xì)胞ET-1基因表達(dá)。 5.報(bào)告基因質(zhì)粒構(gòu)建和熒光素酶檢測(cè) 從人基因組DNA調(diào)取ET-1基因啟動(dòng)子(-832/+171bp)片斷;將其插入報(bào)告基因質(zhì)粒pGL3-Basic,形成重組質(zhì)粒pGL3-ET1。以構(gòu)建好的pGL3-ET1為基礎(chǔ),將其中Vezf1結(jié)合位點(diǎn)(-47bp處)“TTACCCCCACTC”突變成“TTACATCCACTC”,形成一個(gè)突變質(zhì)粒pGL3-ET1-m。 HUVEC用Lipofectin Reagent轉(zhuǎn)染pGL3-ET1/pGL3-ET1-m;共轉(zhuǎn)染pRL-SV40(含SV40啟動(dòng)子的海腎熒光素酶報(bào)告基因質(zhì)粒)作為內(nèi)參照。轉(zhuǎn)染48h后,用100nM胰島素刺激1、3和6h;部分細(xì)胞在胰島素刺激前30min至刺激結(jié)束,培養(yǎng)液中含濃度為100nM的Wortmannin(P13K抑制劑)或10μM的PD-98059(MAPK抑制劑);雙熒光素酶報(bào)告檢測(cè)系統(tǒng)(Dual-LuciferseReporter Assay System)檢測(cè)熒光素酶活性(表示ET-1啟動(dòng)子活性)。 結(jié)果 1.胰島素刺激人內(nèi)皮細(xì)胞分泌ET-1 人PAEC用10、100nM胰島素刺激1h;培養(yǎng)上清液中ET-1含量比對(duì)照組明顯增加(P<0.05或P<0.01),并呈劑量依賴(lài)效應(yīng)。 2.GSK3β抑制劑LiCl模仿胰島素刺激內(nèi)皮細(xì)胞ET-1基因表達(dá) 人PAEC用100nM胰島素或20mM LiCl條件培養(yǎng)液處理1h后,GSK3β的Ser~9磷酸化水平比對(duì)照組明顯增高(P<0.01),提示LiCl模仿胰島素抑制GSK3β活性。PAEC用10、100nM胰島素或20mM LiCl刺激1h,細(xì)胞ET-1mRNA水平明顯高于相應(yīng)對(duì)照組(P<0.05或P<0.01)。結(jié)果表明GSK3β活性抑制與培養(yǎng)內(nèi)皮細(xì)胞ET-1基因表達(dá)上調(diào)有關(guān)。 3.特異性抑制GSK3β表達(dá)上調(diào)內(nèi)皮細(xì)胞ET-1 mRNA表達(dá)和ET-1多肽釋放 為進(jìn)一步證實(shí)GSK3β對(duì)ET-1基因表達(dá)的影響,人PAEC轉(zhuǎn)染GSK3βsiRNA/control siRNA后,細(xì)胞和培養(yǎng)上清液分別用于qRT-PCR和ELISA分析。GSK3βsiRNA轉(zhuǎn)染的人內(nèi)皮細(xì)胞GSK3βmRNA表達(dá)僅為control siRNA轉(zhuǎn)染細(xì)胞的20%,證實(shí)siRNA成功抑制GSK3β基因表達(dá)。GSK3p沉默分別上調(diào)ET-1mRNA表達(dá)50%(P<0.01)和ET-1多肽釋放100%(P<0.01)。結(jié)果證實(shí)GSK3β活性抑制可上調(diào)內(nèi)皮細(xì)胞ET-1 mRNA轉(zhuǎn)錄和ET-1多肽釋放。 4.過(guò)表達(dá)GSK3β基因減弱胰島素對(duì)ET-1表達(dá)的刺激作用 為闡明GSK3β在胰島素調(diào)節(jié)ET-1產(chǎn)生中的作用,人PAEC感染共表達(dá)GSK3β和GFP重組腺病毒后,qRT-PCR和ELISA分別檢測(cè)細(xì)胞ET-1基因轉(zhuǎn)錄與ET-1多肽分泌。與空白病毒(無(wú)插入片斷)感染細(xì)胞相比,過(guò)表達(dá)GSK3β表達(dá)明顯減弱胰島素對(duì)ET-1 mRNA表達(dá)(P<0.01)和ET-1多肽釋放的刺激作用(P<0.05);結(jié)果支持GSK3β負(fù)調(diào)節(jié)內(nèi)皮細(xì)胞ET-1轉(zhuǎn)錄與ET-1分泌。 5.Vezf1調(diào)節(jié)內(nèi)皮細(xì)胞ET-1表達(dá) 為確定Vezf1是否調(diào)節(jié)內(nèi)皮細(xì)胞ET-1基因表達(dá),人PAEC轉(zhuǎn)染VeZf1 siRNA后,細(xì)胞和培養(yǎng)上清液用于qRT-PCR和ELISA分析。Vezf1 siRNA轉(zhuǎn)染細(xì)胞Vezf1 mRNA水平僅為control siRNA轉(zhuǎn)染細(xì)胞的9%,而相應(yīng)ET-1 mRNA表達(dá)和ET-1多肽釋放僅分別為control siRNA轉(zhuǎn)染細(xì)胞的20%和40%(P<0.01);結(jié)果表明Vezf1參與調(diào)節(jié)內(nèi)皮細(xì)胞ET-1基因轉(zhuǎn)錄和ET-1多肽釋放。 6.胰島素上調(diào)ET-1基因啟動(dòng)子活性由PI3K介導(dǎo) 現(xiàn)有研究已經(jīng)證明,細(xì)胞內(nèi)胰島素滅活GSK3β主要由PI3K介導(dǎo)。為確定內(nèi)皮細(xì)胞中胰島素信號(hào)刺激ET-1基因表達(dá)是否由PI3K介導(dǎo),HUVEC共轉(zhuǎn)染報(bào)告基因質(zhì)粒pGL3-ET1和pRL-SV40,37℃孵育48h后,加入含100nM胰島素培養(yǎng)液37℃,孵育1、3和6h;部分細(xì)胞在胰島素刺激之前30min和刺激期間,培養(yǎng)液中含100nM的Wortmannin或10μM的PD-98059;用雙熒光素酶檢測(cè)試劑盒檢測(cè)ET-1啟動(dòng)子活性。Wortmannin和PD-98059在無(wú)胰島素刺激條件下對(duì)ET-1啟動(dòng)子活性無(wú)明顯影響(P>0.05);胰島素刺激后各時(shí)間點(diǎn)ET-1啟動(dòng)子活性比對(duì)照組(無(wú)胰島素刺激)明顯增強(qiáng)(P<0.05或P<0.01);胰島素+Wortmannin組ET-1啟動(dòng)子活性明顯低于胰島素單獨(dú)處理組(P<0.05或P<0.01),而與對(duì)照組相比,無(wú)顯著性差異(P>0.05);胰島素+PD-98059組ET-1啟動(dòng)子活性與胰島素單獨(dú)處理組比較,無(wú)顯著性差異(P>0.05),且明顯高于對(duì)照組(P<0.05或P<0.01)。結(jié)果說(shuō)明胰島素上調(diào)ET-1基因啟動(dòng)子活性由PI3K介導(dǎo)。 7.Vezf1參與胰島素對(duì)ET-1基因表達(dá)的調(diào)節(jié) 為證實(shí)胰島素調(diào)節(jié)ET-1表達(dá)是否通過(guò)轉(zhuǎn)錄因子Vezf1發(fā)揮作用,HUVEC分別轉(zhuǎn)染pGL3-ET1和Vezf1結(jié)合序列突變質(zhì)粒pGL3-ET1-m;轉(zhuǎn)染48h后,加入含100nM胰島素培養(yǎng)液,37℃孵育6h;雙熒光素酶檢測(cè)試劑盒檢測(cè)ET-1啟動(dòng)子活性。胰島素明顯上調(diào)轉(zhuǎn)染pGL3-ET1內(nèi)皮細(xì)胞的ET-1啟動(dòng)子活性(P<0.05);而轉(zhuǎn)染pGL3-ET1-m內(nèi)皮細(xì)胞的ET-1啟動(dòng)子活性在胰島素刺激后與對(duì)照組無(wú)明顯差異。結(jié)果說(shuō)明Vezf1參與胰島素對(duì)ET-1基因表達(dá)調(diào)節(jié)。 結(jié)論 1.本實(shí)驗(yàn)首次發(fā)現(xiàn)PI3K-GSK3β信號(hào)通路在胰島素調(diào)節(jié)內(nèi)皮細(xì)胞ET-1基因表達(dá)中起關(guān)鍵作用。PI3K-GSK3β信號(hào)通路可能是胰島素抵抗時(shí)高胰島素血癥引起內(nèi)皮細(xì)胞ET-1表達(dá)增加的分子基礎(chǔ)。 2.內(nèi)皮細(xì)胞特異性轉(zhuǎn)錄因子Vezf1參與胰島素對(duì)內(nèi)皮細(xì)胞ET-1基因表達(dá)調(diào)節(jié)。
[Abstract]:Endothelin -1 (endothelin-1, ET-1), as a powerful vasoconstrictor and mitogen, plays an important role in the pathogenesis of hypertension, coronary heart disease, and myocardial hypertrophy. The regulation of ET-1 expression in endothelial cells mainly occurs at the transcriptional level. A large number of literature reports that insulin can stimulate ET-1 expression in endothelial cells, and the high pancreas in insulin resistance. Islet emia can activate the endothelin system and increase the expression of ET-1, which may lead to the proliferation or hypertrophy of cardiovascular cells and abnormal vasomotion.
Insulin activates two main signaling pathways of PI3 kinase (P13K) and mitogen activated protein kinase (MAPK). It is known that the PI3K/Akt pathway mediates insulin stimulation of nitric oxide (NO) production in endothelial cells, but it is not clear whether the PI3K/Akt pathway participates in the insulin stimulation of the ET-1 gene expression in endothelial cells. Insulin activates PI3K/Akt and then phosphorylates 9 bits of silk. Amino acid residue (Ser~9) causes glycogen synthase kinase -3 beta (GSK beta) inactivation.GSK3 beta as a multifunctional serine / threonine kinase, which can phosphorate a variety of transcription factors and regulate its activity, for example, to change the binding capacity of transcription factors and DNA. As an important kinase downstream of insulin signals, GSK3 beta is involved in regulating the ET-1 gene of endothelial cells. The expression has not been reported in the literature.
The human ET-1 gene promoter contains the TATA frame and its activity is regulated by a variety of transcription factors, such as AP-1, zinc finger structure transcription factor GATA-2, and hypoxia inducible factor -1 (HIF-1), but these transcription factors are not limited to vascular endothelial cells; therefore, these factors are not likely to cause insulin induced endothelial specific genes alone. ET-1 expression. The binding of -1 (Vezf1) to ET-1 core promoter is a potential target for regulating the expression of cell specific gene ET-1 in endothelial cells. It is not clear whether Vezf1 is involved in the regulation of insulin on the expression of ET-1 in endothelial cells.
The study: (1) whether the effect of insulin on GSK3 beta inactivation induces the increase of ET-1 gene expression in endothelial cells; (2) whether insulin up ET-1 promoter activity is mediated by PI3K; (3) whether Vezf1 participates in the regulation of ET-1 gene expression in endothelial cells by insulin signal. The aim of the study is to clarify the molecular mechanism of insulin regulating the ET-1 expression of endothelial cells. System.
Materials and methods
1. cell culture
Human pulmonary artery endothelial cells (PAEC) were grown in EBM-2 culture medium containing 2% fetal bovine serum (FBS). Human umbilical vein endothelial cells (HUVEC) were cultured in RPMI 1640 medium containing 4%FBS.
2. insulin and lithium chloride (LiCl) treatment
After 6h was starved in human pulmonary artery endothelial cells (PAEC) in single cultured human pulmonary artery, 0-100nM recombinant pig insulin or 20mM LiCl (GSK3 beta inhibitor) conditioned medium was added. The content of ET-1 polypeptide in cultured supernatant was detected by enzyme linked immunosorbent assay (ELISA) at 37 degrees or ELISA, or Real time quantitative RT-PCR (Real time). After treatment with insulin or LiCl, the cells were fixed with 4% formaldehyde, and the levels of Ser~9 phosphorylated GSK3 beta and total GSK3 beta protein (GSK3p activity) were detected by ELISA.
Transfection of 3.GSK3 beta siRNA and Vezf1 siRNA to endothelial cells
The monolayer PAEC was incubated with GSK3 beta Nezf1 siRNA and control siRNA respectively (no specific sequence) was incubated at.37 C at.37 C. The ET-1 content of the culture supernatant was determined by ELISA method, and the cell ET-1 and the expression of the gene were analyzed by qRT-PCR, and the inhibitory effect on the target protein was confirmed by the analysis.
4. recombinant adenovirus Ad5-GSK3 beta infection of endothelial cells
Human PAEC infected respectively the recombinant adenovirus expression vector (Ad5-GSK3 beta) and the GFP gene expression vector (Ad5-GSK3 beta) and the blank adenovirus (Ad5-GFP) that only expressed the GFP gene, respectively, and incubated the ET-1 content of the supernatant in the culture medium containing or without 18nM insulin condition culture, and qRT-PCR analyzed the expression of the ET-1 gene of the cells after the infection.
5. report gene plasmid construction and luciferase detection
The ET-1 gene promoter (-832/+171bp) fragment was extracted from the human genome DNA, and was inserted into the reporter gene plasmid pGL3-Basic to form a recombinant plasmid pGL3-ET1., based on the constructed pGL3-ET1, and the Vezf1 binding site (-47bp) "TTACCCCCACTC" was mutated into a "TTACATCCACTC", forming a mutant plasmid pGL3-ET1-m..
HUVEC transfected pGL3-ET1/pGL3-ET1-m with Lipofectin Reagent, CO transfected pRL-SV40 (the sea kidney luciferase reporter gene plasmid containing SV40 promoter) as internal reference. After transfection of 48h, 100nM insulin was used to stimulate 1,3 and 6h. Or 10 M PD-98059 (MAPK inhibitor); double Luciferase Report detection system (Dual-LuciferseReporter Assay System) detected luciferase activity (indicating the activity of ET-1 promoter).
Result
1. insulin stimulates human endothelial cells to secrete ET-1
Human PAEC was stimulated by 10100nM insulin, and ET-1 content in culture supernatant increased significantly (P < 0.05 or P < 0.01), and showed a dose-dependent effect in the culture supernatant (P < 0 or P < 0.01).
2.GSK3 beta inhibitor LiCl mimics insulin stimulated ET-1 gene expression in endothelial cells
After 1h was treated with 100nM insulin or 20mM LiCl conditioned medium, the level of Ser~9 phosphorylation of GSK3 beta was significantly higher than that of the control group (P < 0.01), suggesting that the LiCl mimic insulin inhibition GSK3 beta activity was stimulated by 10100nM insulin or 20mM. The level of the cells was significantly higher than that in the corresponding control group (< 0.05 or 0.01). The inhibition of K3 beta activity was related to the up regulation of ET-1 gene expression in cultured endothelial cells.
3. specific inhibition of GSK3 beta expression upregulated ET-1 mRNA expression and ET-1 peptide release in endothelial cells.
In order to further confirm the effect of GSK3 beta on the expression of ET-1 gene, after transfection of human PAEC to GSK3 beta siRNA/control siRNA, the cells and culture supernatant were used for qRT-PCR and ELISA to analyze.GSK3 beta siRNA transfected respectively. The GSK3 beta mRNA expression was only 20% of the transfected cells. Do not increase ET-1mRNA expression 50% (P < 0.01) and ET-1 polypeptide release 100% (P < 0.01). The results showed that the inhibition of GSK3 beta activity could up regulate the ET-1 mRNA transcription of endothelial cells and the release of ET-1 polypeptide.
4. overexpression of GSK3 beta gene weakens insulin's stimulatory effect on ET-1 expression.
In order to elucidate the role of GSK3 beta in the insulin regulation of ET-1 production, after human PAEC infection co expressed GSK3 beta and GFP recombinant adenovirus, qRT-PCR and ELISA detected the transcription of ET-1 gene and the secretion of ET-1 polypeptide respectively. Compared with the blank virus (no inserted fragment) infected cells, overexpression of GSK3 beta reduced the expression of insulin to ET-1 mRNA (< 0.01). The stimulatory effect of ET-1 peptide release (P < 0.05) results in GSK3 beta negative regulation of ET-1 transcription and ET-1 secretion in endothelial cells.
5.Vezf1 regulates the expression of ET-1 in endothelial cells
In order to determine whether Vezf1 regulates the expression of ET-1 gene in endothelial cells, after transfection of human PAEC to VeZf1 siRNA, cells and culture supernatant are used for qRT-PCR and ELISA to analyze.Vezf1 siRNA transfected cells with Vezf1 mRNA level only 9%, while the corresponding expression and polypeptide release are only 20% of the transfected cells respectively. And 40% (P < 0.01); the results showed that Vezf1 was involved in regulating ET-1 gene transcription and ET-1 peptide release in endothelial cells.
6. insulin upregulates ET-1 gene promoter activity mediated by PI3K.
The current research has shown that intracellular insulin inactivation of GSK3 beta is mainly mediated by PI3K. To determine whether the ET-1 gene expression of insulin signal in endothelial cells is mediated by PI3K, HUVEC co transfection reporter gene plasmid pGL3-ET1 and pRL-SV40,37 C incubate 48h, adding 100nM insulin culture medium at 37 C to incubate 1,3 and 6h; some of the cells are in the pancreas. Before the stimulation of 30min and stimulation, the culture medium contained 100nM Wortmannin or 10 M PD-98059, and the double luciferase detection kit was used to detect the activity of ET-1 promoter.Wortmannin and PD-98059 on the ET-1 promoter activity without insulin stimulation (P > 0.05), and the activity of ET-1 promoter at each time point after insulin stimulation. Compared with the control group (P < 0.05 or P < 0.01), the activity of ET-1 promoter in insulin +Wortmannin group was significantly lower than that in the insulin treatment group (P < 0.05 or P < 0.01), but there was no significant difference compared with the control group (P > 0.05), and the activity of ET-1 promoter in the insulin + PD-98059 group was not significantly higher than that of the individual insulin treatment group. Sexual difference (P > 0.05) was significantly higher than that in the control group (P < 0.05 or P < 0.01). The results showed that the up regulation of ET-1 gene promoter activity was mediated by PI3K.
7.Vezf1 participates in the regulation of ET-1 gene expression by insulin
To verify whether insulin regulated ET-1 expression through the transcription factor Vezf1, HUVEC transfected pGL3-ET1 and Vezf1 binding sequence mutation plasmid pGL3-ET1-m respectively. After transfecting 48h, adding 100nM insulin culture solution and incubating 6h at 37 C, double luciferase detection kit was used to detect ET-1 promoter activity. Insulin obviously up-regulated transfection pGL3-ET1 inside The ET-1 promoter activity of the skin cells (P < 0.05), and the activity of ET-1 promoter transfected with pGL3-ET1-m endothelial cells was not significantly different from that of the control group after insulin stimulation. The results showed that Vezf1 was involved in the regulation of the expression of the ET-1 gene in the insulin.
conclusion
1. for the first time, we found that PI3K-GSK3 beta signaling pathway plays a key role in the expression of ET-1 gene in insulin regulated endothelial cells. The.PI3K-GSK3 beta signaling pathway may be the molecular basis for the increase of ET-1 expression in endothelial cells induced by hyperinsulinemia in insulin resistance.
2. endothelial cell specific transcription factor Vezf1 is involved in the regulation of insulin on ET-1 gene expression in endothelial cells.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2007
【分類(lèi)號(hào)】:R341
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陶莉,陳克正;低溫缺氧/復(fù)溫供氧新生鼠出血肺組織中缺氧誘導(dǎo)因子-1α蛋白的表達(dá)[J];廣州醫(yī)學(xué)院學(xué)報(bào);2004年03期
2 胡雅毅,劉淑蕓,邢愛(ài)耘,周淑;缺氧誘導(dǎo)因子HIF-1α在妊娠高血壓綜合征胎盤(pán)組織中的表達(dá)及意義[J];華西醫(yī)學(xué);2005年02期
3 袁志明,王佩顯,陳寶元,李彥明,徐建強(qiáng);間歇低氧對(duì)大鼠內(nèi)皮素及其受體基因表達(dá)的影響[J];中華急診醫(yī)學(xué)雜志;2005年09期
4 胡雅毅;劉淑蕓;邢愛(ài)耘;周淑;;缺氧誘導(dǎo)因子HIF-1α、HIF-2α在妊娠高血壓綜合征胎盤(pán)組織中的表達(dá)[J];實(shí)用婦產(chǎn)科雜志;2005年12期
5 李曉莉,高鈺琪,劉福玉,陳建,項(xiàng)德坤,蔣春華,黃慶愿;染料木黃酮對(duì)慢性缺氧大鼠血管活性物質(zhì)的調(diào)節(jié)作用[J];食品科學(xué);2005年10期
6 張冬子;郭世文;金林;;表沒(méi)食子兒茶素沒(méi)食子酸酯對(duì)大鼠蛛網(wǎng)膜下腔出血后腦血管痙攣影響的實(shí)驗(yàn)研究[J];實(shí)用醫(yī)技雜志;2014年04期
7 胡雅毅;劉淑蕓;;缺氧誘導(dǎo)因子與妊娠[J];現(xiàn)代婦產(chǎn)科進(jìn)展;2006年04期
8 向常清,黃嵐,晉軍,李洪;17-β雌二醇對(duì)培養(yǎng)人臍靜脈內(nèi)皮細(xì)胞缺氧損傷的保護(hù)作用[J];中國(guó)心血管雜志;2005年03期
9 趙海燕;陳寶元;馮靖;郭美南;;間歇低氧對(duì)人臍靜脈內(nèi)皮細(xì)胞中內(nèi)皮素的影響[J];中國(guó)心血管雜志;2007年02期
10 李小樂(lè);陳玉君;陳克正;;內(nèi)皮素1在新生兒肺出血中的作用[J];中國(guó)新生兒科雜志;2008年06期
相關(guān)博士學(xué)位論文 前10條
1 袁志明;慢性間歇低氧誘發(fā)大鼠高血壓發(fā)病機(jī)制的研究[D];天津醫(yī)科大學(xué);2003年
2 胡雅毅;妊娠期肝內(nèi)膽汁淤積癥患者胎盤(pán)上缺氧誘導(dǎo)因子的初步研究[D];四川大學(xué);2005年
3 邱齡;腺病毒介導(dǎo)的重組人HIF-1α基因誘導(dǎo)大鼠后肢缺血骨骼肌組織血管再生的作用[D];華中科技大學(xué);2006年
4 張薇;缺氧預(yù)處理對(duì)大鼠視網(wǎng)膜缺血再灌注的保護(hù)作用的研究[D];中國(guó)醫(yī)科大學(xué);2007年
5 趙海燕;阻塞性睡眠呼吸暫停模式間歇低氧導(dǎo)致內(nèi)皮功能障礙的細(xì)胞學(xué)研究[D];天津醫(yī)科大學(xué);2007年
6 丁依玲;子癇前期胎盤(pán)床病理改變及MMP-2、TIMP-2和HIF-1α、vWF在其發(fā)病機(jī)制中的作用[D];中南大學(xué);2006年
7 陳玉君;內(nèi)皮素-1、血管內(nèi)皮生長(zhǎng)因子、缺氧誘導(dǎo)因子-1在新生鼠肺出血發(fā)生中的作用[D];廣西醫(yī)科大學(xué);2007年
8 俞小芳;HIF-α亞單位在5/6腎切除大鼠腎病進(jìn)展中的作用及干預(yù)的實(shí)驗(yàn)研究[D];復(fù)旦大學(xué);2009年
9 李東;血管內(nèi)皮細(xì)胞miR-125和miR-126的功能研究[D];第二軍醫(yī)大學(xué);2010年
10 盧海燕;下頜前移矯治器治療OSAHS的動(dòng)物實(shí)驗(yàn)研究及臨床應(yīng)用[D];河北醫(yī)科大學(xué);2010年
相關(guān)碩士學(xué)位論文 前7條
1 王莉;低氧對(duì)三種高原動(dòng)物肺組織ET-1的影響及NF-κB的調(diào)節(jié)[D];浙江大學(xué);2006年
2 楊海玉;肺癌組織缺氧誘導(dǎo)因子-1α表達(dá)與腫瘤血管生成的關(guān)系[D];南昌大學(xué);2006年
3 崔艷雙;子癇前期、子癇胎盤(pán)組織中VEGF、HIF-1的表達(dá)及其與MVD的相關(guān)性研究[D];吉林大學(xué);2007年
4 毛敏;替米沙坦治療睡眠呼吸暫停低通氣綜合征合并血壓晨峰的高血壓患者的臨床觀察[D];中南大學(xué);2008年
5 李小樂(lè);內(nèi)皮素受體、內(nèi)皮素轉(zhuǎn)換酶-1在新生鼠肺出血發(fā)生過(guò)程中肺內(nèi)的表達(dá)[D];廣西醫(yī)科大學(xué);2009年
6 劉曄;下頜前移矯治對(duì)OSAHS兔血漿ET-1、AngⅡ水平和腎皮質(zhì)VEGF表達(dá)的影響[D];河北醫(yī)科大學(xué);2009年
7 郭宗偉;通心絡(luò)對(duì)血管內(nèi)皮細(xì)胞缺氧損傷的保護(hù)作用[D];河北醫(yī)科大學(xué);2014年
,本文編號(hào):1777109
本文鏈接:http://www.sikaile.net/yixuelunwen/binglixuelunwen/1777109.html