全基因組關(guān)聯(lián)研究中的兩階段設(shè)計(jì)與分析
[Abstract]:Whole genome association, an important tool for finding the susceptible genes of complex diseases, has helped scientists successfully find a number of genetic variants associated with a variety of human diseases (single nucleotide polymorphisms). Compared to one stage design (all cases and control samples are sequenced in all loci), two of them are reasonably constructed. Phase design (the first phase selected a part of the case - control sample to sequence all the sites, select a small portion of the most significant loci to enter the second stage and sequence on the remaining samples according to the results of the association test), which can greatly reduce the workload and cost of sequencing and thus become the whole genome. A commonly used method in association studies. Repeated analysis of data separately examined at each stage often loses the effectiveness of the test. Some scholars have proposed a combined analysis strategy of combining two stages of test statistics to improve the statistical efficiency. The existing joint analysis methods are based on a hypothesis known. The model is used to construct the test statistics, but the genetic model that is subordinate to the single nucleotide polymorphic loci in the actual disease is usually unknown, that is, the genetic model is uncertain. If the assumed genetic model is incorrect, it may lead to unrobust performance.
This paper focuses on the robust unit point joint analysis method in the two stage design of whole genome research, including the following three sub topics. (1) we propose a robust test (MERT) and MAX based on the measurement of the secondary allele more than 5%, based on the measurement of the maximum and minimum efficiency of the two robust test series. 3 test (recessive, dominant, the maximum of the absolute value of the trend test statistics calculated under the genetic model) - the joint analysis method, obtains the large sample asymptotic distribution of the MERT joint analysis test statistics and gives a efficient and feasible parameter Bootstrap method for calculating the p value and the work effect of the joint analysis method of the MAX3. A large number of simulated studies on MAX3 joint analysis, MERT joint analysis and repeated analysis, joint analysis and repeated analysis based on additive model trend test statistics, and comparison of statistical efficacy based on the combined analysis method and repeated analysis method based on allele test statistics, and numerical results. The effectiveness of the combined analysis was generally higher than repeated analysis and the MAX3 combined analysis had the best performance. An analysis of the actual data of a study of type 2 diabetes was carried out. A new risk single nucleotide polymorphisms were reported by the p value calculated by the MAx3 combined analysis. (2) the frequency of secondary alleles was less than 5%. In rare variations, we propose a Beta test based repeated analysis method and a joint analysis method. The theoretical proof that the p value of the Beta test is asymptotically obeying the standard uniform distribution is given. The first class error rate and efficiency of the repeated and joint analysis are compared by simulation. The results show that the two methods can control the first type of error well. The combined analysis was more effective than repeated analysis. The two methods proposed in this study were used to analyze the actual data of rheumatoid arthritis. It was confirmed that the single nucleotide polymorphisms were significantly associated with rheumatoid arthritis.
(3) based on the asymptotic Bias factor, we propose a robust two stage Bias analysis method, and define the detection probability to evaluate the asymptotic Bias factor ranking method. By comparing the maximum asymptotical Bias factor combined analysis method, the genetic model average asymptotic Bias factor joint analysis method can be added. The results show that the maximum asymptotic Bias factor combined analysis method has the most robust performance. The analysis of a group of actual data shows that the maximum asymptotic Bias factor sorting method can effectively detect the single nucleotide polymorphic loci of the recessive or dominant model and the single nucleotide polymorphic loci of the hidden or dominant model. The association between diseases.
The full text is divided into six chapters. The first chapter is introduction, introduces some basic concepts and research background. The second chapter is preparatory knowledge, introduces some common statistics and test methods in the study of whole genome association; the third chapter discusses the two stage design and analysis of common genetic variation; the fourth chapter studies the two phase design of rare genetic variation. Chapter 5 discusses two-stage design and analysis based on asymptotic Bayesian factors; Chapter 6 is a summary and outlook for future work.
【學(xué)位授予單位】:云南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2012
【分類號(hào)】:R346
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 區(qū)寶嬌;不合理用藥分析[J];新醫(yī)學(xué);1989年09期
2 Varro E.Tyler;張治針;;藥用植物的研究[J];江西中醫(yī)學(xué)院學(xué)報(bào);1991年02期
3 聶波;劉勇;徐青;梁鑫淼;肖培根;;地參反相高效液相色譜分析方法的建立[J];世界科學(xué)技術(shù)-中醫(yī)藥現(xiàn)代化;2006年01期
4 張秋菊;崔世勇;;水中痕量鐵分析進(jìn)展[J];中國衛(wèi)生檢驗(yàn)雜志;2007年07期
5 潘俊杰;鄭琴;楊明;;三七中三七總皂苷的提取、分離純化及分析方法的研究進(jìn)展[J];世界科學(xué)技術(shù)-中醫(yī)藥現(xiàn)代化;2007年06期
6 何濤;張嵐;鄂學(xué)禮;;飲用水中二氧化氯及其消毒副產(chǎn)物分析方法研究進(jìn)展[J];國外醫(yī)學(xué)(衛(wèi)生學(xué)分冊);2008年02期
7 吳劍威;楊美華;高微微;趙潤懷;;鐮刀菌毒素分析方法研究進(jìn)展[J];中草藥;2008年04期
8 鄭勤云;朱智碧;;癌癥患者麻醉藥品用藥調(diào)查與分析[J];中國藥業(yè);2008年12期
9 劉福艷;李軍;謝元超;劉福強(qiáng);;中成藥中非法添加化學(xué)藥品的現(xiàn)狀與分析檢測對(duì)策[J];中國藥事;2008年12期
10 歐燦純;;2008年我院門診第二類精神藥品的使用與分析[J];廣西醫(yī)學(xué);2009年10期
相關(guān)會(huì)議論文 前10條
1 于輝;劉洋;;應(yīng)急物資的兩階段局內(nèi)分配策略[A];經(jīng)濟(jì)全球化與系統(tǒng)工程——中國系統(tǒng)工程學(xué)會(huì)第16屆學(xué)術(shù)年會(huì)論文集[C];2010年
2 鄭青山;楊娟;;不同實(shí)驗(yàn)數(shù)據(jù)合并分析方法[A];定量藥理研究方法學(xué)培訓(xùn)班講義[C];2010年
3 馬蔚;;錳的分析方法進(jìn)展[A];新世紀(jì)預(yù)防醫(yī)學(xué)面臨的挑戰(zhàn)——中華預(yù)防醫(yī)學(xué)會(huì)首屆學(xué)術(shù)年會(huì)論文摘要集[C];2002年
4 顧昌明;;關(guān)于復(fù)配農(nóng)藥分析方法的探討[A];江蘇省農(nóng)藥學(xué)術(shù)研討會(huì)論文集[C];1997年
5 陸啟亮;翟永梅;;兩階段MPA法的改進(jìn)研究[A];上海防災(zāi)救災(zāi)研究所20周年慶典會(huì)議研究短文集[C];2009年
6 石鋒;;語音格局的分析方法[A];第六屆全國現(xiàn)代語音學(xué)學(xué)術(shù)會(huì)議論文集(上)[C];2003年
7 邵國建;蘇靜波;;區(qū)間可靠性分析方法及在地下隧道結(jié)構(gòu)計(jì)算中的應(yīng)用[A];慶祝中國力學(xué)學(xué)會(huì)成立50周年暨中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)’2007論文摘要集(下)[C];2007年
8 葉鐘;;汽輪機(jī)調(diào)速系統(tǒng)的一些設(shè)計(jì)思想和分析方法[A];中國動(dòng)力工程學(xué)會(huì)成立四十周年文集[C];2002年
9 孫嚴(yán)榮;聞?wù)螺x;喬志;范勝槐;;利用NaOAC—EDTA—NaOH煮沸浸提比色法估測中性土壤有機(jī)質(zhì)含量[A];江蘇土壤肥料科學(xué)與農(nóng)業(yè)環(huán)境[C];2004年
10 張雪蓮;蔡蓮珍;仇士華;;生物體中~(13)C、~(15)N的分析方法[A];第三屆全國現(xiàn)代生物物理技術(shù)學(xué)術(shù)討論會(huì)論文摘要匯編[C];2000年
相關(guān)重要報(bào)紙文章 前10條
1 趙俊豪;質(zhì)量經(jīng)濟(jì)效益分析方法種種[N];中國質(zhì)量報(bào);2008年
2 曉王;市場發(fā)生了轉(zhuǎn)折 分析方法也會(huì)變[N];黃山日?qǐng)?bào);2006年
3 meiying88;股票分析貴在專一而不在多[N];上海證券報(bào);2007年
4 何泳濤;初入市者應(yīng)重視技術(shù)分析[N];期貨日?qǐng)?bào);2008年
5 柴寧;處處留心皆學(xué)問[N];期貨日?qǐng)?bào);2007年
6 大時(shí)代投資 胡紅霞;權(quán)證投資之分時(shí)K線技巧[N];證券日?qǐng)?bào);2005年
7 黃永忠;現(xiàn)行短期償債能力分析方法的缺陷[N];中國財(cái)經(jīng)報(bào);2002年
8 ;石油開采廢水回注應(yīng)達(dá)到《碎屑鹽油藏注水水質(zhì)推薦指標(biāo)及分析方法》規(guī)定的標(biāo)準(zhǔn)[N];中國環(huán)境報(bào);2005年
9 鄭武;瓦楞紙箱設(shè)備電氣故障檢查和分析方法[N];中國包裝報(bào);2006年
10 曹健美;企業(yè)會(huì)計(jì)報(bào)表分析方法芻議[N];中國城鄉(xiāng)金融報(bào);2002年
相關(guān)博士學(xué)位論文 前10條
1 潘東東;全基因組關(guān)聯(lián)研究中的兩階段設(shè)計(jì)與分析[D];云南大學(xué);2012年
2 蔣愛華;泛(火用)分析方法及其應(yīng)用研究[D];中南大學(xué);2011年
3 任曼;環(huán)境與生物樣品中PCDD/Fs和DL-PCBs的分析方法與環(huán)境行為初步研究[D];中國科學(xué)院研究生院(廣州地球化學(xué)研究所);2006年
4 陳福南;高效液相色譜—化學(xué)發(fā)光分析研究[D];西南大學(xué);2008年
5 李劍;大氣中羰基化合物PFPH/GC/MS分析方法的建立及其應(yīng)用[D];上海大學(xué);2009年
6 王玉t,
本文編號(hào):2164377
本文鏈接:http://www.sikaile.net/xiyixuelunwen/2164377.html