天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 論文百科 > 核心期刊 >

borel域 的翻譯結(jié)果

發(fā)布時(shí)間:2016-02-15 21:12


borel域 的翻譯結(jié)果



         In this paper, we obtained a new method of generating finite or countably infinite dimensional product σ —algebra, and proved that countably infinite dimensional Borel field has the cardinality of the continuum.

            本文得到了有限及可數(shù)無(wú)限維乘積σ—代數(shù)的一種新的生成方法,并證明了可數(shù)無(wú)限維Borel域具有連續(xù)統(tǒng)的勢(shì).

         For metric space X, by M(X) we mean the set of Borel probability measures over X with bounded support, and by R(X) the set of Radon measures in M(X).M(X), R(X) are endowed with Hutchison metric. In this paper, the following results weregot: R(X) is complete if and only if X is complete and bounded. In case that X is seperable,then M(X) is complete if and only if X is complete and bounded.

            距離空間X上,以M(X)記定義在X的Borel域上的具有有界支撐的概率測(cè)度全體,R(X)記M(X)中所有Radon測(cè)度,M(X),R(X)均賦予Hutchison度量.本文得到:R(X)完備當(dāng)且僅當(dāng)X完備且有界.若X可分,則:M(X)完備當(dāng)且僅當(dāng)X完備且有界.

         Let X be a Hausdorff topological space and m be the finite measure on its Borel σ-field B(X). Let {Tt}t≥0 be the sub-Markov semigroup on L~P(X, m) (p > 1) and F_(r,p). be the Sobolev space generated by {Tt}t≥0 Let Cap_(r,p).(.) (r > 0,p > 1) be the capacity associated with {Tt}t≥0 With some conditions we prove that for any positive functional on F_(r.p)~* the dual space of F_(r,p)., there exists an unique measure μ■ on B(X) satisfying Furthermore for any B ∈ B(X), Cap(r,p).(B) = 0 if and only if μ■(B)...

            設(shè)X是 Hausdorff拓?fù)淇臻g,m是其 Borel域 B(X)上的有限測(cè)度.{T_t}t≥0。是 L~p(X;m)(p>1)上的次馬氏半群.F_(r,,p)。是由該半群生成的Sobolev空間.Cap_(r,p)(r> 0;p>1)是相應(yīng)的容度,本文在一定條件下證明了對(duì)任意F_(r,p)共軛空間F_(r,p)~*中的正泛函■, 存在X上唯一的σ-有限測(cè)度μ■,使得_(F(r,p))〈u,■〉_(F(r,p)*)=∫_x~u(x)μ■(dx),u∈F_(r,p), 并且對(duì)任意B∈B(X)Cap~(r,p)(B)=0的充要條件是μ■(B)=0,■∈F_(r,p)~*。

 



本文編號(hào):27454

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/wenshubaike/jyzy/27454.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)96525***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com